ABSTRACT:
A network can be understood as a complex system formed by multiple nodes, where global network behavior arises from local interactions between connected nodes. Often, networks have intrinsic value and are themselves the object of study. In other occasions, the network defines an underlying notion of proximity or dependence, but the object of interest is a signal defined on top of the graph. This is the matter addressed in the field of graph signal processing (GSP). Graph-supported signals appear in many engineering and science fields such as gene expression patterns defined on top of gene networks and the spread of epidemics over social networks. Transversal to the particular application, the philosophy behind GSP is to advance the understanding of network data by redesigning traditional tools originally conceived to study signals defined on regular domains and extend them to analyze signals on the more complex graph domain. In this talk, we will introduce the main building blocks of GSP and illustrate the utility of these concepts through real-world applications. Our focus will be on the definition of stationary graph signals and the inference of underlying graph structures from graph signal observations.
SPEAKER:
Alejandro Ribeiro received the B.Sc. degree in electrical engineering from the Universidad de la Republica Oriental del Uruguay, Montevideo, in 1998 and the M.Sc. and Ph.D. degree in electrical engineering from the Department of Electrical and Computer Engineering, the University of Minnesota, Minneapolis in 2005 and 2007. From 1998 to 2003, he was a member of the technical staff at Bellsouth Montevideo. After his M.Sc. and Ph.D studies, in 2008 he joined the University of Pennsylvania (Penn), Philadelphia, where he is currently the Rosenbluth Associate Professor at the Department of Electrical and Systems Engineering. His research interests are in the applications of statistical signal processing to the study of networks and networked phenomena. His focus is on structured representations of networked data structures, graph signal processing, network optimization, robot teams, and networked control. Dr. Ribeiro received the 2014 O. Hugo Schuck best paper award, the 2012 S. Reid Warren, Jr. Award presented by Penn’s undergraduate student body for outstanding teaching, the NSF CAREER Award in 2010, and paper awards at the 2015 Asilomar Conference on Signals Systems and Computers, the 2013 American Control Conference, as well as the 2006 and 2005 International Conferences on Acoustics, Speech and Signal Processing. Dr. Ribeiro is a Fulbright scholar and a Penn Fellow.
CTTC Auditorium / 10.00