
On Autoencoder-Based
Error Correcting Codes

V. Ninkovic, D. Vukobratovic, C. Häger,
H. Wymeersch, A. Graell i Amat

February 8, 2023



Overview

1. Intro & Motivation

2. System Model and Autoencoder (AE)-Based Codes

3. Rateless Codes

4. Unequal Error Protection (UEP) Codes

5. Appendix: More Interesting Results...

1



Intro & Motivation



Intro & Motivation

▶ O’Shea and Hoydis1: Fundamental "new" way to think about communication systems
design - End–to–end reconstruction task

▶ Key idea - Transmitter, channel and receiver are represented as one deep neural
network (NN)

▶ Joint optimization of transmitter and receiver

▶ Motivation: Conventional communication systems - Split the signal processing into a
chain of multiple independent blocks:
▶ Pros: Efficient, versatile, controllable systems
▶ Cons: Potential sub–optimal end–to–end performances

1T. O’Shea and J. Hoydis, "An introduction to deep learning for the physical layer," IEEE Trans. Cogn.
Commun. Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017.
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System Model and Autoencoder
(AE)-Based Codes



System Model

▶ We consider a problem of communicating a messagem from a set of messages
M = {1, 2, . . . ,M} over a noisy channel

▶ Each message is represented as a sequence s = (s1, s2, . . . , sk) of k = log2(M) bits

▶ Encoder mapping: f : M → Rn encodesm into x = (x1, x2, . . . , xn)
▶ Codewords obey:

▶ Fixed power constraint ∥x∥2
2 = n

▶ Average power constraint 1
M
∑i=M

i=1 ∥xi∥2
2 = n

▶ The code rate R = k/n [bits/channel use]
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System Model

▶ The channel W transforms x ∈ Rn into y ∈ Rn following the probabilistic channel
law p(y|x)

▶ Decoder mapping: g : Rn → M produces an estimate m̂ of the transmitted message
m

▶ Goal: design a pair (f , g) for a given channel W to minimize the average error
probability:

Pe =
1
M

∑
m∈M

P{m̂ ̸= m|m}. (1)
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Solution Using Deep Autoencoders

Figure 1: Communication system represented as a deep autoencoder 2

2T. O’Shea and J. Hoydis, "An introduction to deep learning for the physical layer," IEEE Trans. Cogn.
Commun. Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017. 5



Solution Using Deep Autoencoders

set of encoder layers
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Solution Using Deep Autoencoders

one-hot message encoding
u = (u1, u2, ..., uM) ∈ {0, 1}M
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Solution Using Deep Autoencoders

feed–forward neural network
with H hidden layers
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Solution Using Deep Autoencoders

bottleneck layer containing
n neurons
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Solution Using Deep Autoencoders

ensures that the energy
constraint is met
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Solution Using Deep Autoencoders

noise layer
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Solution Using Deep Autoencoders

AWGN noise
y = x + n
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Solution Using Deep Autoencoders

set of decoder layers
6



Solution Using Deep Autoencoders

feed–forward neural network
with H hidden layers
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Solution Using Deep Autoencoders

softmax layer
b = (b1, b2, . . . , bM) ∈ (0, 1)M
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Solution Using Deep Autoencoders

output decision
m̂ = argmaxi{bi}
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Autoencoder Training

▶ Autoencoder (AE) is trained in end-to-end manner
▶ Stochastic gradient descent (SGD) with Adam optimizer

▶ Loss function: Cross-entropy is used as a surrogate for message error probability:

ℓ(u, b) = −
M∑
i=1

ui log bi, (2)

▶ AE is trained using a batches of training data by minimizing cross-entropy loss
function averaged across a batch of samples
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AE–Based Codes vs Conventional Codes
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Figure 2: Conventional versus AE–based codes 8



Rateless Codes



Rateless Codes - Channel Model

▶ Motivation - Receiver is able to trade off decoding delay against error probability

▶ The error probability decreases with each received symbol – Delay increases

▶ Cascade of AWGN channel and erasure channel - Tail erasures (dying channel) 3

▶ Scenarios where reception of codeword may be interrupted:
▶ Deep fade
▶ Loss of synchronization, lack of memory
▶ Depletion of harvested energy
▶ Satelite communications (loss of LEO satellite)

3L.R. Varshney, S.K. Mitter, and V.K. Goyal, "An information-theoretic characterization of channels that die,"
IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 5711-5724, Sept. 2012.
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Tail Erasure Channel
▶ L channel states - pℓ denotes the probability that the channel is in the ℓ-th state
▶ Erasure channel distribution:

p = {p1, p2, . . . , pL},
L∑
i=ℓ

pℓ = 1 (3)

▶ Receiver receives first rℓ symbols of y, n− rℓ symbols are erased
▶ ℓ-th channel state is defined by (pℓ, rℓ) pair:

r = {r1, r2, . . . , rL} (4)

▶ Receiver in the ℓ-th state receives:

yℓ = {y1, y2, . . . , yrℓ} (5)
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Autoencoder-Based Rateless Codes
▶ Novel class of AE codes that allow to trade off decoding delay and reliability is

introduced - Rateless AE codes
▶ Randomized dropout strategy - Match the AE-based code design to a given erasure

channel model by using binary dropout vector d

d = (d1, d2, . . . , dn), di ∈ {0, 1}, (6)

▶ Channel models with multiple states (L > 1) - Sequence of dropout vectors
dℓ, ℓ ∈ {1, 2, . . . , L} is defined, dℓ corresponds to the ℓ-th class

▶ Rateless AE training process - Different dropout vectors are applied on
batch-by-batch basis (randomized dropout strategy):
▶ Randomly sample a dropout class ℓ ∈ {1, 2, . . . , L} from the dropout class probability

distribution q
▶ Apply the dropout vector dℓ
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Autoencoder-Based Rateless Codes
▶ Channel with Tail Erasures – Topmost rℓ positions (neurons) of the ℓ-th class dropout

vector dℓ are set to ones, others to zero

Figure 3: Communication system represented as a deep autoencoder with additional dropout
layer -Tail erasures 12



Numerical Results
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Figure 4: R-AE versus C-AE BLER performances as a function of the number of received symbols
((n, k) = (24, 12)). 13



Numerical Results
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Numerical Results
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Unequal Error Protection (UEP)
Codes



Autoencoder-Based UEP Codes

▶ We present a simple, flexible and efficient method to design AE-based UEP codes

▶ The key idea is to define appropriate compound loss function that generalizes the
cross-entropy loss function to the UEP case

▶ Message-wise UEP - Trivial manipulation
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Message-Wise AE-Based UEP Codes

▶ Message set M partitioned into C ≤ M disjoint subsets - Each with different error
protection requirements

▶ Message class Mi contains |Mi| = Mi messages,M =
∑C

i=1 Mi

▶ For a given encoder-decoder pair (f , g) and channel W , we define the per-class
probability of error:

P(i)e =
1
Mi

∑
m∈Mi

P{m̂ ̸= m|m}. (7)

▶ Collecting per-class error probabilities, we obtain error probability vector
Pe = (P(1)

e , P(2)
e , . . . , P(C)e )
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Message-Wise AE-Based UEP Codes

▶ Let ℓMj(u, b) be the loss function associated to the j-th message class:

ℓMj(u, b) = −
∑
i∈Mj

ui log bi. (8)

Redefined loss function for message-wise UEP

ℓ(u, b) =
C∑
j=1

λjℓMj(u, b) (9)

▶ λλλ = (λ1, λ2, . . . , λC) is a weight vector associated to the message classes,∑C
j=1 λj = 1, and λj ≥ 0
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Bit-Wise AE-Based UEP Codes
▶ Recall that each message is represented as a binary sequence s = (s1, s2, . . . , sk)
▶ We assume s consists of C sub-messages representing disjoint sequences of bits
s = (s1, s2, . . . , sC):
▶ The length of si is equal ki bits and k =

∑C
i=1 ki

▶ We denote by Si the set of all possible binary sub-messages si where |Si| = 2ki
▶ For a sub-message si ∈ Si, we denote by Msi all messages from M which are

consistent with si
▶ For a given encoder-decoder pair (f , g) and channel W , we define the set of per-class

error probabilities:

P(i)e =
1
|Si|

∑
si∈Si

P{m̂ /∈ Msi |m ∈ Msi}, (10)

▶ Collecting per-class error probabilities, we obtain error probability vector
Pe = (P(1)

e , P(2)
e , . . . , P(C)e )
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Bit-Wise AE-Based UEP Codes

▶ Main idea: Similar but more involved manipulation of loss function

▶ We need to extend the definition of one-hot vector u so that it indicates a subset of
messages in M consistent with a given sj ∈ Sj

▶ For every sj ∈ Sj, we define usj = (u1, u2, . . . , uM), such that itsm-th position is equal
1 if the messagem is consistent with sj:
▶ Note that usj is now a binary vector with 2k−kj ones

▶ Let ℓ(usj , b) be the loss function associated to the j-th submessage:

ℓ(usj , b) = −
M∑
i=1

ui log bi. (11)
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Bit-Wise AE-Based UEP Codes
▶ Given the binary sequence representation s = (s1, s2, . . . , sC) of a messagem ∈ M,

we define a set of C vectors:

U = {us1 , us2 , . . . , usC} (12)

Loss function for the bit-wise UEP case

ℓ(U , b) =
C∑
j=1

λjℓ(usj , b) (13)

▶ λλλ = (λ1, λ2, . . . , λC) is a weight vector associated to the message classes,∑C
j=1 λj = 1, and λj ≥ 0
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Numerical Results
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Figure 7: (P(1)
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e ) performance of AE-based message-wise and bit-wise UEP codes with C = 2 4

4V. Ninkovic, D. Vukobratovic, C. Haeger, H. Wymeersch, and A. Graell i Amat, "Autoencoder-Based Unequal
Error Protection Codes," IEEE Commun. Lett., vol. 25, no. 11, pp.3575-3579, Nov. 2021.
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Numerical Results - Message-Wise UEP
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5Y. Y. Shkel, V. Y. Tan, and S. C. Draper, “Unequal message protection: Asymptotic and non-asymptotic
tradeoffs,” IEEE Trans. Inf. Theory, vol. 61, no. 10, pp. 5396-5416, Oct. 2015.
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Numerical Results - Bit-Wise UEP

3 4 5 6 7
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

P e
UEP Spinal P(1)

e

UEP Spinal P(2)
e

AE P(1)
e (λ = 0.7)

AE P(2)
e (λ = 0.7)

AE P(1)
e (λ = 0.8)

AE P(2)
e (λ = 0.8)

AE P(1)
e (λ = 0.9)

AE P(2)
e (λ = 0.9)

Figure 9: (P(1)
e , P(2)

e ) vs Eb/N0 performance of AE-based and spinal bit-wise UEP codes6

6X. Yu, Y. Li, W. Yang, and Y. Sun, “Design and analysis of unequal error protection rateless spinal codes,”
IEEE Trans. Commun., vol. 64, no. 11, pp. 4461-4473, Nov. 2016.
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Appendix: More Interesting
Results...



Ongoing Work - GNN–based QEC
▶ Graph neural network (GNN)–based decoding of quantum LDPC codes - Quantum

hypergraph–product (hgp) code with code parameter [129, 28] 7
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7Y.H. Liu and D. Poulin, “Neural belief–propagation decoders for quantum error–correcting codes,” Phy.
Rev. Lett., vol. 122, p. 200501, May 2019.
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Thank you for your attention!

mail: vukan.ninkovic@gmail.com
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Progressive Bit-Wise UEP

▶ Importance of sub-messages decreases from S1 to SC
▶ Due to inter-dependance, si is decoded if all sj, j < i, are also decoded
▶ For progressive bit-wise UEP, error probability is redefined as:

P(i)e =
1

|(S1, . . . ,Si)|
· (14)∑

s1,...,si∈(S1,...,Si)

P{m̂ /∈ Ms1,...,si |m ∈ Ms1,...,si},

where Ms1,...,si is the set of all messagesm ∈ M whose binary representation s is
consistent with s1, . . . , si
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Progressive Bit-Wise AE-Based UEP Codes

▶ For every si ∈ Si, we define us1,...,si = (u1, u2, . . . , uM), such that itsm-th position is
equal 1 if the messagem ∈ Ms1,...,si

▶ Given a binary sequence representation s = (s1, s2, . . . , sC) of a messagem ∈ M, we
define a set of C vectors:

U = {us1 , us1,s2 , . . . , us1,s2,...,sC} (15)

▶ We reuse loss function from Eq. 13

28



Numerical Results - Rateless Codes
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Figure 10: R-AE versus C-AE BLER performances as a function of the number of received symbols -
Fixed power constraint ((n, k) = (24, 12)) 29



Numerical Results - Rateless Codes
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Numerical Results - UEP Codes
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Numerical Results - UEP Codes
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