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Introduction

11/10/2008 Miguel Angel Lagunas 2

The aim is that the beamformer learns from the scenario what to do to provide 
the desired signal, reject interferences and minimises the un-directional noise

Any learning process needs to define the following:

- Evaluation process. Usually plotted as “learning curve” which 
reflects how “ignorance” evolve (decreases) with lectures taken. This 
degree of achievement can be global (all the students or single 
objective) or individual (multi-objective problem)
- Learning rule. Lectures with supervised or unsupervised (with 
teacher or without it) taken by the students.
- Confidence of the students on the learning rule. This is equivalent 
to “how much” of the class is worth to retain to decrease ignorance 
in the long term view.

Let us concentrate in the (global or individual) learning curve
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Learning Rule: The Gradient
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The most popular learning rule is to move our knowledge on the contrary of the 
direction where our ignorance increases.

)(mA Q students knowledge 
after lesson (m-1)

Ignorance curve (error) )(mA

Negative gradient direction





Similarity Iterative/Adaptive
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Let us image the problem where we 
consider the beamformer )0(A

This beamformer could be a 
vector of all ceros for example.

We would like to teach lessons to this 
beamformer such that it evolves to the optimum 
for an scenario with R and P being the 
snapshots covariance and the cross-covariance 
between the reference and the snapshots

Thus we like to teach the 
initial beamformer such 
that
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The gradient is: PAR mm  )()(

And, the learning rule will be:
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Let us check convergence. Convergence implies that 
after many lessons taken (m->infinity) the knowledges 
stabilices on
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Thus, the steady state of this learning system is the desired with absolute 
minimum ignorance. This is thanks that the ignorance has a single minimum 
otherwise the rule may converge to local minima. THERE IS NOT 
MISSADJUSMENT a special feature of iterative, instead adaptive, learning (!!!)
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Convergence analysis: Assuming that the learning rule is for a single 
student (Q=1), the recursive nature of the learning 
equation turns to be an IIR with a  single pole. 
Asking for stability is to impose that the pole lie 
inside the unit circle.

Thus, we will write as a FIR (non-recursive) the IIR (recursive) equation of 
our learning rule:
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In summary, convergence 
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Functions of def. positive matrixes
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For any continuous function f(x), the 
Taylor’s series is: 
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For any positive define matrix, we can 
write successive power of it in terms of 
its eigenvalues as:
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In consequence, we can define the 
function f(.) of a matrix as:
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In summary, any continuous function of a matrix PASS DIRECTLY to its 
eigenvalues, yet preserving the same set of eigenvectors

    optopt
mm AAARIA  )0()1( 

Using this result on the gradient learning rule we have:

Where convergence is assured whenever the powers of the above matrix 
tend to zero when m tends to infinity. Since the power for any iteration m is:

      HmmHHm EDIEEDEEERI  

Thus, convergence is ensured for: Qqq ,111  

Clearly the most critical 
eigenvalue is the maximum 
one, so convergence is 
ensured when max

2
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Thus, convergence and its rate is controlled by the so-called eigen-modes that 
evolve to remove ignorance of the beamformer as:
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This reveals that high energy modes converge faster than low energy modes. In 
consequence, the global convergence is bounded by the minimum eigenvalue. 
Setting the time (number of iterations) as the value of m (no) such that the 
power is reduced to 0.1 the initial value, we get an effective rate of convergence 
as:
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This reveals one of the fundamental limitation of the gradient methods which is 
that the steep size μ has to be high enought to speed up convergence but it is 
upper bounded in order to avoid convergence.

DIVERGE
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Geometric view (Q=2)
 

a n(1) 

a n(2) 
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error 
contours

The maximum 
gradient does not 
coincides with the 

direction to the 
optimum
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Eigenvectors max and min

High energy 
zone

Low energy 
zone minimum 
eigenvalue

One pass of the gradient consumes almost 80% of the 
path to minimum in the high energy zone meanwhile it 
goes ahead just 8% on le low energy one



Summary of the Gradient Algorithm
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Remind that the goal of this algorithm is to solve iteratively the optimum 
beamformer without requiring the computation of the inverse covariance matrix.
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Since the goal was to avoid 
matrix inversion we need a 
easy to compute version for 
steep size and convergence 
rate, avoiding those that require 
svd of the covariance matrix.



11/10/2008 Miguel Angel Lagunas 14

    max
1

positive
 definite
 ismatrix 

 theSince

  


Q

q
q

H
nn XXERTrace

With respect                                       since
max

2


 

Setting the steep-size equal to
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Convergence is granted

The trace can be estimated recursively from snapshots as:
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- Threshold set to prevent RF set-off
- Implemeted as a look-at-table to reduce 

computational load

β selected in the range 0.9-0.99. The 
memory introduced by this 
parameter to detect changes on the 
snapshot power will be 1/(1-β)
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min

max

min
0 15.113.2





nWith respect 

Note that the maximum eigenvalues is 
bounded by the trace. When the power at 
each antenna is the same, the trace is Q 
times the power in a single antenna Px

With respect the minimum eigenvalue 
(see Music for example), it coincides 
wit the power of the un-directional 
noise σ2

20 15.1


xQP
n 

As a consequence:
- Large arrays (high Q) will experience 

slower convergence than arrays with a 
few sensors

- High power scenarios will relent 
convergence as well.



Estimating the gradient: LMS

11/10/2008 Miguel Angel Lagunas 16

Moving the iterative framework described before to the adaptive arena, the 
first problem we face is that, for time-varying scenarios, the gradient pass to 
be a random variable that has to be estimated from data.

The LMS is the simplest estimate (theoretically) the worst teacher (largest 
variance and randomness it its conferences) for the learning rule BUT, his high 
dedication (it offers a conference per snapshot) largely compensates the 
quality of his teaching. 
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The LMS Learning Rule is:

Estimated by its INSTANTANEOUS value
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Note that the steep-size and the convergence rate remain as stated for any 
gradient algorithm

Nevertheless, the prize we pay for making adaptive the beamforming is 
that the learning rule become random. This will cause a MISS-
ADJUSTMENT error or an excess of error due to the continuous learning 
behavior that the adaptive nature of the system forces in the beamformer.

In fact, the miss-adjustment can be considered as additional noise that have to 
be taken into account in order to control the overall SNR budget of the array 
system.

Let us imagine that the optimum beamformer is 
substracted from the learning rule……

    )(*
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Define the coefficients error as noptn AAA 
~

then )(~~ *
1 nXAA nnn 

Also, using that the excess of error due to a given error in the coefficients is 
given by:
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The expected value of this random variable is:
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The miss-adjustment is defined as the difference between the experienced error 
and the minimum as a percentage of it, i.e. 10% miss-adjustment implies a 10% 
of excess error over the minimum one.
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Going back to the learning 
rule of the LMS

We can write how the error evolves with respect the coefficients error vector
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 This error has power equal to ξmin
and it is orthogonal to the current 
snapshot (Orthogonality principle)
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Now, we can compute how the covariance of the coefficients evolves 
from the learning rule
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In summary the covariance of the coefficients error is diagonal, in consequence 
after arriving close to convergence the students do not cooperate and their 
ignorance stays uncorrelated.

I
2
min



And the miss-adjusment is:   %100.%100
2


 RtrM

Parameter α controls directly the miss-adjusment, BUT at the same 
time small values relent convergence



LMS Performance
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DSD: The best gradient estimate
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Many people do believe that the performance of the “bad teacher highly 
dedicated” LMS can be overpassed by a perfect teacher but lazzy.

The goal is to estimate the gradient 
as accurate as posible and much 
better (less variance) than the 
instantaneous one.

The best estimate of the 
gradient we may 
construct, for weight q is:
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Let us study this estimate

- Note that DSD is based on perturbation thus there is not RF processing like in 
the LMS, i.e. DSD is fully implemented at baseband.

output

ReferenceError

Directional 
coupler

Variable 
attenuator

μ

Low Pass Filter 
(Integrator)

RF Mixer Mx

THE LMS ANALOG 
IMPLEMENTATION

output

ReferenceError

Variable 
attenuator

μ

THE DSD ANALOG 
IMPLEMENTATION

Gradient Ready

Perturbation 
Control

+/- δ
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The variance of the estimate 
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Clearly, the estimate improves for small perturbations 
and large samples in the average. We use the 
minimum error in the above formula, since the 

derived variance will be relevant for miss-adjustment 
purposes which occurs in convergence 
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THE PERTURBATION ERROR

In order to do not duplicate the baseband processing and the 
aperture, note that any weight does not stay never on its value a(q), it 
is all-time on perturbation, This fact, promotes and excess of error 
that is denoted perturbation error

δ δ

ξ(a-δ)

ξ(a+δ)

Excess 

To compute this excess of error we use 
the Taylor’s expansion of the error

2
)(
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2

22 qr
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d

aaa










Note that the second derivative of the gradient with respect a weight is 
the power at the corresponding antenna, i.e. the qq input of the snapshots 
covariance.
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The previous formula is just the 
perturbation error due to the 
estimate of the gradient for a single 
weight. At the next perturbation the 
coefficient changes so the 
perturbation does. Along a complete 
cycle of Q weights or antennas we 
will use the average.

 
Q

Rtr
2

2

Normalized by the minimum error, The 
perturbation miss-adjutsment is 
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Note that regardless the number of up-dates for convergence is the same, each 
computation of the gradient consumes…..
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The DSD miss-adjustment:
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This term is 

neglected for 
small steep size
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Now in convergence, the covariance matrix does not change, so 
the final value of it will be found from setting

  mm 1

The resulting covariance is: 1
2

2
min

4
 R

K


Note here the major difference of other gradient algorithms. As DSD does, they do 
not allow free search of coefficients after convergence is achieved, i.e. the 
coordination of coefficients remains at convergence. This severely bounds the 
performance on time-varying scenarios.  

Finally the miss-
adjustment error is:
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The total miss-adjustment will be the sum of the 
miss-adjustment error plus the perturbation error
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And, the optimum global miss-
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DSD Performance
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DSD Design:
- α from the convergence rate
- K from the desired missadjustment
- δ from its desig rule to make equal 

the perturbation error and the miss-
adjustment error.
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Random Search Methods LRS
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The linear random search LRS algorithm is inspired on the DSD but with a 
single perturbation for all the weights.
In a distributed beamforming scenario, the LRS captures the increment on 
the error from a single random perturbation vector δ

The error produced with the 
weight and the weight perturbed 
are: )(

)(

nA

nA
n

n







 Note that all the 
components are 

perturbed 
simultaneously

The perturbation is selected random and uncorrelated with zero mean and 
covariance σ2

The learning rule is:
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The perturbation error is:

δ

ξ(A)

ξ(A+δ)

Excess 

To compute this excess of error we use
the Taylor’s expansion of the error
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Excess of error for a 
coefficients error δ
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The variance of ∆n is:
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We can compute the covariance evolution of the LRS
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Setting the stationary regime where the 
coefficients errors matrix stays the 
same after successive updates we 
have:
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nK
R 

2
min1 2

2
 Again, note that LRS does not provide freedom to 

the coefficients at convergence, in fact he forces 
cooperation at this stage. This is an additional 
disadvantage again when comparing with the LMS

The miss-adjustment noise is:
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And the total miss-adjustment is the sum of the above plus the perturbation 
missadjustment. 
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An optimum exists 
for the perturbation 
missadjustment
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The optimum perturbation error is 
K
QM opt

P
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 Rtr

K
QMM opt

PP  Obtain α from the desired
convergence rate

Find σ2 from the above equation and K from the desired
missadjustment

K
QM opt 2

The optimum design is when the miss-adjustment error is equal to the 
perturbation missadjustment, or the global is just twice any one of them



Performance of the LRS
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Random Search Algorithms: RS
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Random Search refers to those algorithm that use random perturbation in order 
to decrease their errors.
A vector perturbation δn is used over the current weights, with variance equal to 
one as:
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Random search algorithm always converge since they just consolidate good 
moves in the error surface.

In order to have an idea of the miss-adjustment of RS algorithm, note that when 
the beamformer is within a circle of radius μ/2, there is no further improvement 
from a perturbation of size μ
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In addition, RS algorithms need to guarantee that the miss-adjustment stays 
below the variance of the error measurement performed by K samples. This 
implies that:

K
Rtr min
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Perturbation

Variance of the 
error estimate



Performance of the RS
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Accelerated and Guided RS: ARS 
and GARS
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 nnA  

New pert. n

Compute

   nn AA  
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The ARS accelerates μ (uses 2 times the previous steep-size) when a good 
move in the surface error is discovered. For a bad move the steep size is reset 
to a minimum value
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Extra guidance GARS can be provided to the ARS: For example, when 
the move on a given direction is fully exploited and a bad move is sensed, 
the ARS ask for a new random perturbation. A guided version, before this 
option exploits that the last point stays close to the tangent point with the 
limit surface of error, in consequence is good to select the angle in the 
perturbation as 90º or -90º. If this guide fails then the GARS resort to the 
random perturbation again.

 

a 1 (n) 

a 2 (n)



The Kalman Filter
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The Gauss Model

We characterize the “world” we 
like to observe and track by 
means an STATE VECTOR

nA
nnn wAHz 

We have an OBSERVATION the state 
from outside trough an 
OBSERVATION MATRIX and with a 
MEASUREMENT NOISE

Any differential equation 
between an input and an 
output can be written as 
a STATE EQUATION

nnn vAFA 1

This equation is described 
by the TRANSITION 
MATRIZ and the 
INNOVATION



11/10/2008 Miguel Angel Lagunas 46

nnn wAHz 

THE MEASUREMENT EQUATION

The observation vector, this is 
the only available information 
that we have from the system 
and it will be the main input for 
the algorithm

The state vector is the 
target of the algorithm. We 
aim to estimate it as 
accurate as possible

The measurement noise. It is 
assumed independent of the state 
and distributed Gaussian with zero 
mean and variance matrix equal to L

What is know by us from this equation: - The observation vector
- The observation matrix H
- The covariance of the noise L
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nnn vAFA 1

THE STATE EQUATION

The transition matrix is given by 
KNOWN relation between state 
variables. Full IGNORANCE is 
reflected by setting this matrix equal to 
the identity matrix.

The innovation vector is a 
Gaussian vector with zero 
mean and covariance matrix 
V. It represents the un-
predicted evolution of the 
state. When the ignorance 
about the observation matrix 
is high, the diagonals of V 
have to be high

What is known from this equation: - The transition matrix
- The innovation covariance matrix



Some examples: Radar and Sonar
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Non-accelerated 
movement.

 ynxnnn vvyx ,,,

Actual position 
and velocity of 

the target

Measurement
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Note that not all the components 
to be tracked are necessarily 
observed at the measurement
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Time elapsed from 

two returns

Non accelerated 
movement

Maneuver 
capabilities of 
the target for 
unpredicted 
acceleration 

reflected on the 
variance of 
innovation
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NON INTRUSSIVE MEASUREMENTS
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1

The state vector are 
temperatures at 
equally spaced 
levels. Also the 

velocity of changed 
can be included.

Differential equation 
describing heat evolution 

inside, predicted and 
unpredicted contributions

nnn vAFA 1

Measurement vector of a 
number of components 
usually greater than the 
number of states to track.

nnn wAHz 

The observation matrix 
describes heat 

propagation from the 
internal layers to the 

external cover



Non‐linear measurement: PLL

11/10/2008 Miguel Angel Lagunas 50

Single carrier i-q 
components with un-

know phase and 
frequency

nnn vA
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The state vector includes 
the instantaneous phase 
and the instantaneous 

frequency.

Innovation includes possible 
jerk from the Doppler 

frequency

Non-linear 
measurement, i.e. 
the i-q components 

of the received 
signal. Note that 
frequency is not 

observed



Beamforming
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Observation 
(Reference)

*
min,

*
nn

H
nn AXz 

The observation 
matrix (vector) is 

the current 
snapshot.

The observation noise is 
the minimum error which is 
orthogonal to the snapshot

The state vector 
to estimate is the 

optimum 
beamformer

nnn vAA 1

Full ignorance about the 
evolution of the optimum 

beamformer



The Kalman’s Algorithm
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nnn vAFA 1

nnn wAHz 

GAUSS MODEL
Starting with an initial state vector (it could be 
the zero vector) and the corresponding (high) 
ignorance

nnn

H
nnn
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AAEA

ˆ~     being

~~   whereˆ
00










The algorithm mimics the model with two equation in order to track the 
state vector, the two equations are:

nnnn

nn

KAFA
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ˆˆ

ˆˆ

1

where n
K

nand

Is the so-called GAIN 
MATRIX

Is the model error
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THE MODEL ERROR AND ITS COVARIANCE

  nnnnnn wAAHzz  ˆˆ

This equation 
relates the 

system error 
with the state 

vector

nnn wAH 
~



Thus, the covariance of the system error is: This equation reveals that the 
system error is due to the state error plus the measurement error.

LHHE H
nn
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PROGATION OF THE STATE ERROR

nnnn

nnn

KAFA

vAFA









ˆˆ
1

1
Subtracting these two 
equations we have the 
propagation of the state 

error vector
nnnnn KvAFA 

~~
1

THE ORTHOGONALITY PRINCIPLE

Since the goal in the design of the gain matrix is to reduce as much as 
possible the covariance of the state error, we apply the orthogonality principle 
between the error and the data used to minimize this error:

  0~
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H
nnAE     

  1~

~0




n
H
nnn
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nn
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  HwHAAEAE
nn

H
nn

H
nn 












 

~~~


Using the equation of the system error in terms of the state vector, we have:

In summary,

LHHE

EHFK
H

nn

n
H

nn



 1

In order to complete the algorithm iteration we need to propagate 
the state error covariance.
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PROPAGATION OF THE STATE ERROR COVARIANCE

nnnnn KvAFA 
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1
Using
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This term is zero due to the 
orthogonality principle
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Summary
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Adaptive beamforming with Kalman
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The covariance propagation tends, when convergence, to the covariance 
of the innovation, in consequence the miss-adjustment is:

   
min

0

min 

RtrvRVtrace
M 

Convergence: At the initial iteration we can assume that the state error 
covariance is diagonal

min
2  n
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nnn XXsEnnn
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steep-size

Small versus the first 
term
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Thus, the diagonal terms of the error covariance evolve as:
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Assuming that the power received at 
each antenna is the same, and that the 
global power sensed by the aperture 
does not changes, this term is 
approximately equal to:
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Convergence is achieved after two times Q (the number of antennas) 
iterations
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An adaptive steep-size (with a similarity with the LMS)











 H

nn XX
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min
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v

The maximum steep size for 
zero iterated error in LMS

Small since miss-adjustment use 
to stay far below the minimum 
error in any practical design



Non‐linear measurement: 
Extended Kalman Algorithm
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Example: For the PLL design, the measurement equation was non-linear. 
Nevertheless for small state error, the system error can be linearized using the 
first term of the Taylor’s series of the non-linearity.
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Neglecting the products of errors after Taylor’s first term 
approximation we have……………………
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This defines the observation matrix since it relates linearly the system error 
with the state error
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n
H ¡¡ In fact, we only need linearity to relate 

system error with state error !!!
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Kalman filter for PLL



Square‐Root Filter
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Sometimes, very small miss-adjustment may promote that the covariance 
equation becomes eventually non- positive definite. In such a case, the 
algorithm locally diverges showing like a “periodic” re-setting to initial conditions 
just after achieving convergence.

This problem is easy to solve for the scalar measurement case, i.e. adaptive 
beamforming, thanks to the following expression of the covariance in terms of 
its square-root matrix.
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The adequate value of β is:
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nn dd

With this the SRK algorithm is……..
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Adaptive beamforming SRK
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SRK Performance
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The Recursive Least Squares (RLS)
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The RLS algorithm is, basically, a different view of the Kalman filter.

Basically, the idea is that any adaptive beamformer should adapt its design to the 
changes in the data covariance and P-vector respectively. If both terms are 
updated in a recursive manner as:

The optimum beamformer will 
be:

1
1

11 

  nnn PRA RLS obeys to this principle but using 

the lemma of the inverse in the 
update of the data covariance.

HCDCBA    BCCBCDCBBA HH 11111  
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Using this lemma with the inverse of the updated covariance…..
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In addition……
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The two equations above can be re-formulated in a learning rule similar to the 
used in Kalman as
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1.- Compute the beamformer output

2.- Compute error with reference

3.- Compute 

4.- Gain Matrix

5.- Update weights

6.- Update the inverse matrix

RLS 
Algorithm
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The RLS is equivalent to 
minimise a running average of 
the MSE error with the same 
constant used for updates of 

covariance a P-vector

2)()1()1()( nnMSEnMSE  
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mn

m m
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Or, in a non-recursive manner……….
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