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Introduction

The aim is that the beamformer learns from the scenario what to do to provide
the desired signal, reject interferences and minimises the un-directional noise

Any learning process needs to define the following:

- Evaluation process. Usually plotted as “learning curve” which
reflects how “ignorance” evolve (decreases) with lectures taken. This
degree of achievement can be global (all the students or single
objective) or individual (multi-objective problem)

- Learning rule. Lectures with supervised or unsupervised (with
teacher or without it) taken by the students.

- Confidence of the students on the learning rule. This is equivalent
to “how much” of the class is worth to retain to decrease ignorance
in the long term view.

Let us concentrate in the (global or individual) learning curve
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Learning Rule: The Gradient

The most popular learning rule is to move our knowledge on the contrary of the
direction where our ignorance increases.

§(ﬁ(m) ) ~—— Ignorance curve (error)

Negative gradient direction

_VE

A(m)
A ™ Q students knowledge

after lesson (m-1)
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Similarity Iterative/Adaptive

Let us image the problem where we

consider the beamformer , (0) This beamformer could be a
A vector of all ceros for example.

We would like to teach lessons to this
beamformer such that it evolves to the optimum

for an scenario with R and P being the Thus we like to teach the
snapshots covariance and the cross-covariance initial beamformer such
between the reference and the snapshots that
The ignorance will be the MSE error (0) _p1
A — Aopt _ 5 E

é(m) _ Pd +A(m)H BA(m) +A(m)H E'*'EH A(m)
or

H
é(m) — fmin + (A(m) _Aopt) 5 A(m) _Aopt)
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And, the learning rule will be:

I
A — AM 7 g(m) oM u(@ AM _ P)

| S —

A(m+1) _ I_ﬂBA(m)+ﬂE

Let us check convergence. Convergence implies that
after many lessons taken (m->infinity) the knowledges
stabilices on

A(m+1) _ A(m) _ A(OO)

A = (1 uR)A™ + 1P = A =R 7P = A

Thus, the steady state of this learning system is the desired with absolute
minimum ignorance. This is thanks that the ignorance has a single minimum
otherwise the rule may converge to local minima. THERE IS NOT
MISSADJUSMENT a specigl fegture_of iterative, instead adaptive, learning (I!!)
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Convergence analysis: Assuming that the learning rule is for a single

student (Q=1), the recursive nature of the learning
equation turns to be an IIR with a single pole.

Asking for stability is to impose that the pole lie
inside the unit circle.

Thus, we will write as a FIR (non-recursive) the IIR (recursive) equation of
our learning rule:

AT = (1 RJA™ ¢ 1P = (1 R (A~ Agy )+ Aoy
Qr

(
aﬁ(m) — Aopt ): (l_ IUB)m \A(O) - Aopt

In summary, convergence
is ensured whenever

1 m
Ignorance after Initial I|m e Q iy R)
m lectures gnorance — _
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Functions of def. positive matrixes
For any continuous function f(x), the f (X) _ Z‘O: o f (m) (O)

Taylor’s series is:

For any positive define matrix, we can m— H
write successive power of it in terms of R ED E — R —ED E

its eigenvalues as: ——

In consequence, we can define the
function f(.) of a matrix as:

f(R) - iR <m>(o> iD <m>(o> E

| | (m)
Since, for every eigenvalue Z am f (O) — f (ﬂ“q)

the series is formed by:
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In summary, any continuous function of a matrix PASS DIRECTLY to its
eigenvalues, yet preserving the same set of eigenvectors

Using this result on the gradient learning rule we have:

(m+l) (0)
A (ﬁ — Aot )+ Aot

Where convergence is assured whenever the powers of the above matrix
tend to zero when m tends to infinity. Since the power for any iteration m is:

(1-uR)" = (EE" - uEDE" " = E(1 - 4D E"

1-2q|<1 q=1Q

Thus, convergence is ensured for:

Clearly the most critical
eigenvalue is the maximu
one, SO convergence is

ensured when
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Thus, convergence and its rate is controlled by the so-called eigen-modes that
evolve to remove ignorance of the beamformer as:

m
2t @

ﬂ“max
/

This reveals that high energy modes converge faster than low energy modes. In
consequence, the global convergence is bounded by the minimum eigenvalue.
Setting the time (number of iterations) as the value of m (n,) such that the

power is reduced to 0.1 the initial value, we get an effective rate of convergence
as:

‘(1_ HAq )m

(1-pli)° =0.1=n, = Inl0) o3 1

In(l_luﬂ'min) ﬂﬂ’min

This reveals one of the fundamental limitation of the gradient methods which is

that the steep size u has to be high enought to speed up convergence but it is
upper bounded in order to avoid convergence.
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Geometric view (Q=2)

Equal
error
Emin contours
The maximum
gradient does not
coincides with the >
direction to the a,(2)
n

optimum
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High energy
zone -

Eigenvectors max and min

Low energy
zone minimum
eigenvalue
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One pass of the gradient consumes almost 80% of the
path to minimum in the high energy zone meanwhile it
goes ahead just 8% on le low energy one
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Summary of the Gradient Algorithm

Remind that the goal of this algorithm is to solve iteratively the optimum
beamformer without requiring the computation of the inverse covariance matrix.

AMD A _ “(5 A _ E)

Since the goal was to avoid

matrix inversion we need a

easy to compute version for

steep size and convergence

Ne ~ 2.3 1 rate, avoiding those that require
0~ < svd of the covariance matrix.
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2

With respect )7 < since Since the
max Q - .
T L) EL ) P matrix s P
race|R = Z = o <
nn — 1 |definite e
Setting the steep-size equal to pOSitive
200 .
U= (R with O<a <l Convergence is granted

The trace can be estimated recursively from snapshots as:

-

Trace(B):> P(n) = if P()>P, APM)+L-HX, X,

else P,
- Threshold set to prevent RF set-off B selected in the range 0.9-0.99. The
- Implemeted as a look-at-table to reduce = memory introduced by this
computational load parameter to detect changes on the
. sna shot power will be 1/(1-8)
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With respect Ny ~ ?2.3- Zl —-1.15 imax
HAmin min

Note that the maximum eigenvalues is
bounded by the trace. When the power at
each antenna is the same, the trace is Q
times the power in a single antenna P,

With respect the minimum eigenvalue
(see Music for example), it coincides
wit the power of the un-directional
noise o2

As a consequence:

- Large arrays (high Q) will experience
slower convergence than arrays with a
few sensors

- High power scenarios will relent
convergence as well.
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Estimating the gradient: LMS

Moving the iterative framework described before to the adaptive arena, the
first problem we face is that, for time-varying scenarios, the gradient pass to
be a random variable that has to be estimated from data.

The LMS is the simplest estimate (theoretically) the worst teacher (largest
variance and randomness it its conferences) for the learning rule BUT, his high
dedication (it offers a conference per snapshot) largely compensates the
quality of his teaching.

Estimated by its INSTANTANEOUS value
RA™ _p

X XTA —X d"(n)= xn(xnH A —d*(n))= ~X & (n)

The LMS Learning Rule is:

A

Zn+l

= A, +uX & (n)
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Note that the steep-size and the convergence rate remain as stated for any
gradient algorithm

Nevertheless, the prize we pay for making adaptive the beamforming is
that the learning rule become random. This will cause a MISS-
ADJUSTMENT error or an excess of error due to the continuous learning
behavior that the adaptive nature of the system forces in the beamformer.

In fact, the miss-adjustment can be considered as additional noise that have to
be taken into account in order to control the overall SNR budget of the array

system.

Let us imagine that the optimum beamformer is
substracted from the learning rule......

(An+1 _Aopt ): (An — Aopt )"' ﬂiné‘*(n)
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~

Define the coefficients error as An = Ropt — An

—~

then A

2 n+l

— An o :ulng*(n)

Also, using that the excess of error due to a given error in the coefficients is
given by:
~ H ~
Sn =Smin T Ay RA

Dip XM

The expected value of this random variable is:

~H _ ~ ~ ~H
min + E An BAn) = Gmin T E(tracelién An B}j =

—nN—nNn

where gn = E(;\ /Z\H)

Array Processing  Miguel Angel

Lagunas Adaptive Beamforming 18

September 13



The miss-adjustment is defined as the difference between the experienced error
and the minimum as a percentage of it, i.e. 10% miss-adjustment implies a 10%
of excess error over the minimum one.

_E . trx R
M = >~ Smin 100% = —="="100%

fmin émm

Going back to the learning ~ ~ *
rule of the LMS A=A —uX & (n)

We can write how the error evolves with respect the coefficients error vector

~H
eM)=¢c,.(N+A_ X This error has power equal to ¢,
min —n Zn L
..~ ———anditis orthogonal to the current
* _ 7 H A snapshot (Orthogonality principle)
& (N) =é&pin(n) + X, A,
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Now, we can compute how the covariance of the coefficients evolves
from the learning rule

~

A

n+l

= A, —uX & (n)

Il

H % )"H 2
2 —Z —2c0v| uX mm+Xn An AL |+ 4 CminR

=n+1

Being close to convergence §n+1 — ; — ;

en 0= _ZCOV(ILlX (;1 +Xr|;|'z‘n)'z‘:l)+ﬂ2§min5

2uRE = p*Epin R
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In summary the covariance of the coefficients error is diagonal, in consequence
after arriving close to convergence the students do not cooperate and their
ignorance stays uncorrelated.

And the miss-adjusment is:

M = %tr(g)m% ~ 2.100%

Parameter a controls directly the miss-adjusment, BUT at the same
time small values relent convergence
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LMS Performance

Learning curve
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DSD: The best gradient estimate

Many people do believe that the performance of the “bad teacher highly
dedicated” LMS can be overpassed by a perfect teacher but lazzy.

AMD _ AM _ o am) P)

2 1 The goal is to estimate the gradient
U< Ny = 2.3—— as accurate as posible and much
ﬂ“max /u}“min better (less variance) than the

instantaneous one.

The best estimate of the

gradient we may | 85 — é(am (q) T 5)_ f(am (q) _ 5)
construct, for weight q is: aam (q) 25
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Let us study this estimate

- Note that DSD is based on perturbation thus there is not RF processing like in
the LMS, i.e. DSD is fully implemented at baseband.

Varaidble THEBDESMANANAXDGCG
>< —— tedteratator IMPIEEEEENYNONN

\

Directional ==
coupler MM

owdptput

»—b
L

+/- 0

Low Pass Filter |
(Integrator) ]

Ré&fefermee
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The variance of the estimate

%mz;\g(mf:lzﬂg(w ) KZZZEQ le(s)”

= PP R P I

K
In summary:
05 _ §(+5)_§(_5) 2 1 LS 2 fmln
- M (¢) == 25 T os? qu( | ) 262K

Clearly, the estimate improves for small perturbations
and large samples in the average. We use the
minimum error in the above formula, since the

derived variance will be relevant for miss-adjustment

purposes which occurs in convergence

Array Processing  Miguel Angel

Lagunas Adaptive Beamforming 29

September 13



THE PERTURBATION ERROR

In order to do not duplicate the baseband processing and the
aperture, note that any weight does not stay never on its value a(q), it
is all-time on perturbation, This fact, promotes and excess of error

that is denoted perturbation error

To compute this excess of error we use
the Taylor’s expansion of the error

--------- l \ E(a+0)+<&(a—-0)
Excess —f(a)
_________ I , 2 f 2
i . _0° d°¢  o7r(q)

* - 2.da(@” 2

v

\ 4

Note that the second derivative of the gradient with respect a weight is
the power at the corresponding antenna, i.e. the qq input of the snapshots

covariance.
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The previous formula is just the
perturbation error due to the

estimate of the gradient for a single 52tl’(R)
weight. At the next perturbation the
coefficient changes so the 2Q

perturbation does. Along a complete
cycle of Q weights or antennas we
will use the average.

‘tr(R)
Normalized by the minimum error, The P — o°tr(R
perturbation miss-adjutsment is 2Q § _
min

Note that regardless the number of up-dates for convergence is the same, each
computation of the gradient consumes.....

| — g components ......... ... 2
Number of antennas.. ...
Q »Global for update 4QK snapshots
Number of samples... ... K
2 perturbati ons/antenn a...2 |
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A

The DSD miss-adjustment:  Z_—opt = —opt

A(m+1) _ A(m) —,Lle

~m+1 ~m

A=A +uv

being
~m+1 ~m

A B A +,LIV-|-IUV\ Gradient error
Actual dient / (Uncorrelated) with variance
S gresien already computed previously
V=RA -P=-RA_
T - = §m|n

Thus, the covariance update is: 252 K -

3™ =3" - 24Rs" +“%m“|
= == 25%K =
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Now in convergence, the covariance matrix does not change, so
the final value of it will be found from setting il m
_|_
2 =2 =X

The resulting covariance is: ,ufmm 1
2="2 R
- 40°K~T

Note here the major difference of other gradient algorithms. As DSD does, they do
not allow free search of coefficients after convergence is achieved, i.e. the
coordination of coefficients remains at convergence. This severely bounds the
performance on time-varying scenarios.

Finally the miss- M — trE EJ _ HQ S min
adjustment error is: E 5 _ 452K
min
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The total miss-adjustment will be the sum of the
miss-adjustment error plus the perturbation error

2
M :ME+P:ﬂQ§min _|_5 tr(R)

Note that: 452 K ZQ émin
M =2 bx where a=AQomir b= tr(R) X=5%
X 4K 2Q§min
| o 2o
The optimum perturbation is: H = tr(R)
b 2Ktr(R)

And, the optimum global miss-
adjustment is:

Array Procegjag
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DSD Performance

DSD Design:

- a from the convergence rate

- K from the desired missadjustment Convergence after 10

- O from its desig rule to make equal iterations BUT still
the perturbation error and the miss-
adjustment error.

behaves more slowly
than the LMS

1400

1200

1000 |-

The major advantage of
the DSD versus LMS is
the use in coorperartive
or distributed
beamforming in wireless
sensor networks

800 | i
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i
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Random Search Methods LRS

The linear random search LRS algorithm is inspired on the DSD but with a
single perturbation for all the weights.

In a distributed beamforming scenario, the LRS captures the increment on
the error from a single random perturbation vector &

n
The error produced with the A — §(n) Note that all the
weight and the weight perturbed N components are
are: A _|_é — §+ (n) perturbed

simultaneously

The perturbation is selected random and uncorrelated with zero mean and
covariance g2

The learning rule is: An+l :An +,UAné

An = é(n) _§+ (n)
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The perturbation error is:
To compute this excess of error we ust
the Taylor’s expansion of the error

5(A, +9)+5(A,)

Excess ’ 9 o § (An )

In consequence: Excess of error for a
2 coefficients error &
o“tr(R) ©

Mp =
2gmin
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The variance of A, is:

Ay ==&, =~ e.(r-m) = Je. (r-m)f

varz( nA*;]): zféin

—nN —N

and E(AnA j:g RS

since
Apa = Ayt 0
We can compute the covariance evolution of the LRS
September 13 Array Processing  Miguel Angel
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2
2 H
S =Y +ucc’l Smin —21E| OA A
=n+l =n = K
2
_ 2 __2 2§m
—En+,u0l % 2,uE( 00 RAnAn)
2
DEF-.
=Y +u°c’l Smin —2u0°RY
=N = K ==
. . . 2
Setting the stationary regime where the 1 2F°.
coefficients errors matrix stays the ﬂR 1 fmln —
same after successive updates we — K
have:
September 13 Array Processing  Miguel Angel
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M1 2600 s

Again, note that LRS does not provide freedom to
the coefficients at convergence, in fact he forces

2 = K =N cooperation at this stage. This is an additional
disadvantage again when comparing with the LMS
tr(z R) QE
The miss-adjustment noise is: M N = =" _ é:mln

gmin K

And the total miss-adjustment is the sum of the above plus the perturbation
missadjustment.

M :MN+MP:ﬂQI§mi“+MP

20 o°tr(R
H=— and Mp = (R)
o tr(R) 28 min
aQ An optimum exists
M = +Mp for the perturbation
KMp missadjustment
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oQ

The optimum perturbation erroris M gpt — ==

K
Mp =Mp" = = Obtain a from the desired
K 2¢ min convergence rate

Find o2 from the above equation and K from the desired
missadjustment

MOpt:2 aQ

K

The optimum design is when the miss-adjustment error is equal to the
perturbation missadjustment, or the global is just twice any one of them
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Performance of the LRS

Last array factor
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Random Search Algorithms: RS

Random Search refers to those algorithm that use random perturbation in order
to decrease their errors.
A vector perturbation 0, is used over the current weights with variance equal to

one as: .
é — COS(Q)_ JS'”(H) Where 6 is a random variable with
uniform distributed between 0,27

YES

NO

Array Process™Mg  Miguel Angel
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Random search algorithm always converge since they just consolidate good
moves in the error surface.

In order to have an idea of the miss-adjustment of RS algorithm, note that when
the beamformer is within a circle of radius y/2, there is no further improvement

from a perturbation of size u

! In consequence:
H 9y 2
> o= 2L
=1 8 —
and
2
M M = Ou “tr ( R )
2 8 5 min
Array Processing  Miguel Angel 40
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In addition, RS algorithms need to guarantee that the miss-adjustment stays
below the variance of the error measurement performed by K samples. This

implies that:
9utr (R) _ 2 i

8 VK

fmin <

Perturbation

Variance of the
error estimate

M gmin
5 min

A 4
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Accelerated and Guided RS: ARS
and GARS

The ARS accelerates u (uses 2 times the previous steep-size) when a good
move in the surface error is discovered. For a bad move the steep size is reset
to a minimum value

NO YES
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Extra guidance GARS can be provided to the ARS: For example, when
the move on a given direction is fully exploited and a bad move is sensed,
the ARS ask for a new random perturbation. A guided version, before this
option exploits that the last point stays close to the tangent point with the
limit surface of error, in consequence is good to select the angle in the
perturbation as 90° or -90°. If this guide fails then the GARS resort to the
random perturbation again.

aim 1

@
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The Kalman Filter

The Gauss Model
We have an OBSERVATION the state

We characterize the “world” we from outside trough an
like to observe and track by OBSERVATION/MATRIX and with a
means an STATE VECTOR MEASUREMENT NOISE

Any differential equation /\'I’hisﬁgquation is described
between an input and an A  —FA +v by the TRANSITION
output can be written as =N+l —=—n " =n MATRIZ and the

a STATE EQUATION N INNOVATION

Array Processing  Miguel Angel
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ITHE MEASUREMENT

EQUATION

The observation vector, this is
the only available information
that we have from the system
and it will be the main input for
the algorithm

What is know by us from this equation:

September 13

Array Processing
Lagunas Adaptive Beamforming

The state vector is the
target of the algorithm. We
aim to estimate it as
accurate as possible

The measurement noise. It is
assumed independent of the state
and distributed Gaussian with zero
mean and variance matrix equal to L

- The observation vector
- The observation matrix H
- The covariance of the noise L

Miguel Angel 46



THE STATE EQUATION

An = Eén TV,
The transition matrix is given by The innovation vector is a
KNOWN relation between state Gaussian vector with zero
variables. Full IGNORANCE is mean and covariance matrix
reflected by setting this matrix equal to V. It represents the un-
the identity matrix. predicted evolution of the

state. When the ignorance
about the observation matrix
is high, the diagonals of V
have to be high

What is known from this equation: - The transition matrix
- The innovation covariance matrix

Array Processing  Miguel Angel
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Some examples: Radar and Sonar

Xn
The state ™
vector to be _— y”
estimated at —n Vxn
every n
Yy |

Note that not all the components

to be tracked are necessarily
observed at the measurement _\_

Non-accelerated
movement. Actual position
and velocity of
Xn ' Y Vin s Vyn) the target

Maneuver

capabilities of

Non accelerated ~ the target for
movement unpredicted

acceleration

h1l hl2 0 reflected on the
Z, = A, +w variance of
h21 h22 O _ innovation
1 T O \
Measurement 0 1\0 T

An+1 = O O O An +Vn

Time elapsed from
tWO r.?ray Enocessmg Miguel Angel _O O O 1_

September 13
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NON INTRUSSIVE MEASUREMENTS

Tln Measurement vector of a
T Zn number of components
An = T3 usually greater than the
n number of states to track.
T4, .—>

z,=HA +w
The state vector are — ——— —nN

temperatures at
equally spaced
levels. Also the
velocity of changed
can be included.

The observation matrix
.—’ describes heat

propagation from the

internal layers to the
.—> external cover

A _EAn Vi

—n+l "~ __

Differential equation
describing heat evolution
inside, predicted and

unpredicted contributions

September 13 Array Processing  Miguel Angel
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Non-linear measurement: PLL

The state vector includes

the instantaneous phase 5
and the instantaneous B 1 27T A Ly
frequency. —n+l — —n " =n
q y 0 1
H(n) Innovation includes possible
A = jerk from the Doppler
n
- f (n) frequency

Single carrier i-q
components with un- COS(H(H)) Non-linear
knofw phase and Z,= —sin(é’(n)) +W, measurement, i.e.
requency the i-g components
of the received
signal. Note that
frequency is not
observed

Array Processing  Miguel Angel
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Beamforming

1]

Observation
(Reference)

—X A te .

—nN —n

The observation
matrix (vector) is

the current

snapsh

Full ignorance about the
evolution of the optimum

beamformer orthogonal to the snapshot
An+1 = A +V
September 13 Array Processing  Miguel Angel
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The state vector
to estimate is the
optimum

The observation noise is beamformer

the minimum error which is



The Kalman’s Algorithm

GAUSS MODEL

A

Starting with an initial state vector (it could be

1 = FAL Y, : :
— —0nN = the zero vector) and the corresponding (high)

ignorance

~ ~ ~H
A, z, where z —E(A,A)
bEing E‘n :An __An

The algorithm mimics the model with two equation in order to track the
state vector, the two equations are:

2n =H An where ﬁn Is the so-called GAIN
= MATRIX

— and €&
Ana EA“ +£n§n =" |s the model error

Array Processing  Miguel Angel
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THE MODEL ERROR AND ITS COVARIANCE

N

én :Zn _Zn

:2 An _é‘n )+V_Vn

This equation
relates the ~
system error n— ién T W,
with the state
vector

| ™

Thus, the covariance of the system error is: This equation reveals that the
system error is due to the state error plus the measurement error.

I m

=Hz H"+

Il

n

Array Processing  Miguel Angel
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PROGATION OF THE STATE ERROR

Subtracting these two

A= FA +V, :
R equations we have the ;& B FA +V K ¢
A = FA +K propagation of the state  —n+1 — S hgn
—n+l —né‘n error vector

THE ORTHOGONALITY PRINCIPLE

Since the goal in the design of the gain matrix is to reduce as much as
possible the covariance of the state error, we apply the orthogonality principle

between the error and the data used to minimize this error:

E(Anﬂé':l ):9 ‘

Array Processing  Miguel Angel
September 13 Lagunas Adaptive Beamforming

54



Using the equation of the system error in terms of the state vector, we have:

E(A, e )=E (_H[An ﬂ+v_vnD=§ni

In summary, K — an H H E;l

n

E =HEZ H"+L

=N ——N=

In order to complete the algorithm iteration we need to propagate
the state error covariance.

Array Processing  Miguel Angel
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PROPAGATION OF THE STATE ERROR COVARIANCE

Using =FA +v_—K &

|

This term is zero due to the
orthogonality principle

> =F2 FP'-K E K" +v

=—n+1 ——N= —N=—=N=—=n =
14 H H
> =FX (I-HE™H z)F +V
=—n+1 —=nN n =N/— ==
Array Processing  Miguel Angel 56
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n=n+1

September 13

Summary

n ——N— =—n
€n =1Ly _ién
Ani _Eén +£n§”

Array Processing  Miguel Angel
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Adaptive beamforming with Kalman

@o =0 X =1061
_y H
V =yl =101 En =X £n£n+§min
N ),
K,=2 X,/E
s(n)=d(n) - X' A,
An+1 :An "‘ﬁng(n)
H
z :z I _ Xnﬁn En
n=n+1 = =N = 5min+ﬁnH§nﬁn
Array Processing  Miguel Angel .

September 13 Lagunas Adaptive Beamforming



The covariance propagation tends, when convergence, to the covariance
of the innovation, in consequence the miss-adjustment is:

M trace(\éi) - votr(g)
i gmin ) gmin

Convergence: At the initial iteration we can assume that the state error
covariance is diagonal

Small versus the first

~ o2 ‘ 2, H term
En ~ Snin En — Sn ln ln + fmin The ne.W
' steep-size
H 2
£ o~y |l-—ZnZn K ~|—|x
Snil Znl= 2 v H —nN X XH EAN)
fmin +Sn ln Xn Zniin
September 13 Array Processing  Miguel Angel -
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Thus, the diagonal terms of the error covariance evolve as:

2
@)y
N 2 H
éfmin *5p ln ln
Assuming that the power received at
each antenna is the same, and that the
global power sensed by the aperture
does not changes, this term is
approximately equal to:
‘X ( )‘232 P 2
TR LA T P ' PO
gmin +Sr21£r|;|ln gmin +S§QPX Q

Convergence is achieved after two times Q (the number of antennas)

iterations Ne B
1-1] —o01 n, = 2'302?) ~2.3Q

Q Inl1-Q

Array Processing  MiguelMngel
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An adaptive steep-size (with a similarity with the LMS)

The maximum steep size for 1

zero iterated error in LMS H= H
Xo Xy

Small since miss-adjustment use Vo

to stay far below the minimum
error in any practical design

Array Processing  Miguel Angel
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Non-linear measurement:
Extended Kalman Algorithm

Example: For the PLL design, the measurement equation was non-linear.
Nevertheless for small state error, the system error can be linearized using the
first term of the Taylor’s series of the non-linearity.

2, = A(n){ cosen) }w _ A(n){ cos(9 (n))}

—sin (n

¢ = A(n) (A(n)+A(ﬂ))COS(H(n)+9(n)) A(n)cos H(n)
E0 =T (Am)-+ A@) inlam) + 5()+ Amysinlém) |

Neglecting the products of errors after Taylor’s first term
approximation we have........................

Array Processing  Miguel Angel
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N

) R_gn)cos(:(n))—ei(n)AA(n)sin( Sn))

€n |:_ A(n) Sin(g(n))— & (n)A(n) COS(H(n)):| —n

This defines the observation matrix since it relates linearly the system error
with the state error

cos(é(n)) —A(n)sin é(n) 0
—sin(é(n)) —A(n)cos é(n) 0

H ii In fact, we only need linearity to relate
=—n system error with state error !!!

Array Processing  Miguel Angel
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( 1‘\0 | _| co é(n)) —A(n)siné(n) 0
n ) ) —A(n)co é(n) 0

- - = = —sm(H(n)
(102 0 0) 00 1

> =0 9 O H

lo 01 AN
\ J
(01 0 0) |k =y HHE?

V=0 003 0

_\ \ 0 0 O.OW &, =L, _zn =7, _é‘n[

Pt =Ln TR &n
Kalman filter for PLL
H
-Fx F" -K
=n+1 —=N= —
n=n+1 |
Array Processing  Miguel Angel 64
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Square-Root Filter

Sometimes, very small miss-adjustment may promote that the covariance
equation becomes eventually non- positive definite. In such a case, the
algorithm locally diverges showing like a “periodic” re-setting to initial conditions
just after achieving convergence.

This problem is easy to solve for the scalar measurement case, i.e. adaptive
beamforming, thanks to the following expression of the covariance in terms of
its square-root matrix.

X XpZ |
Y =X -—="—— =" with thesquare-rootof thecovariance
B B gmin +ln Enén
sPX XxMs
z‘n :§n§: wehave §n+1 :§n l_ = _:I_n =Hn §r|;|
B o B o émin'l'ln gngn ln B
September 13 Array Processing  Miguel Angel o
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(L a_n_n) (: ﬂ—n—nX: ﬂgngn)
with d, =S"X, a= =
N Emin+dp d,
The adequate value of B is:
( 3\
f=1-V1-a*® = 12 1- L 2
Qn‘ 1+ ‘g"‘
V émin
\

With this the SRK algorithm is........

Array Processing  Miguel Angel 66
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Adaptive beamforming SRK

/(AO — O > :106|\
Ro=Y &, 1
E,=d"d +¢&.
V =yl =102 =+
~— ),
ﬁn - gngn / En
g(n)=dn) - X" A
An+1 :An +ﬁn8(n)
= — H 1/2
n=n+l gn+1_§n(l pd.d, )+\i
Seplemberts Array Processing  Miguel Angel 67

Lagunas Adaptive Beamforming



SRK Performance

Learning curve

Learning curve
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The Recursive Least Squares (RLS)

The RLS algorithm is, basically, a different view of the Kalman filter.

Basically, the idea is that any adaptive beamformer should adapt its design to the
changes in the data covariance and P-vector respectively. If both terms are
updated in a recursive manner as:

—n+1_'BR ( ,3) Xq X,

_n+1 ﬂ P (1_ﬂ)ind (n)
The optimum beamformer will
RLS obeys to this principle but using

the lemma of the inverse in the
update of the data covariance.

H
A=B+LDC "mp A'=B*'-B'C|D+C" B‘lcf "B

Array Processing  Miguel Angel
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Using this lemma with the inverse of the updated covariance.....

-1
R =SR-SR, xRS

In addition...... A= Egil(ﬁEn + (1— ,B)L nd*(n))

The two equations above can be re-formulated in a learning rule similar to the
used in Kalman as

A

n+l

=A, +K, & (n)

Array Processing  Miguel Angel
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Data a,,R.-1,d(n) y X

n

H
RLS 1.- Compute the beamformer output Y(n) =an Xy
AlgOI‘Ithm 2.- Compute error with reference

¢(n) = d(n)-y(n)

3.- Compute
p=alX ] R*X ) being a:%

4 .- Gain Matrix aR_l X

5.- Update weights
A

n+l

=A, +K. ¢ "(n)
6.- Update the inverse matrix

B:_l ﬂ _n_n 1_ﬂ
n=n+1

Array Processing  Miguel Angel
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The RLS is equivalent to
minimise a running average of
the MSE error with the same
constant used for updates of
covariance a P-vector

MSE(n) = AMSE(n—1)+ (1— B) £(n)’

Or, in a non-recursive manner..........

MSE(n) = (1- 3). Z L |e(m) =(1- ). Z g

M=—o0

Array Processing  Miguel Angel
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