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CHAPTER I 
 
I.8.1.- 
 
 

1
. . . H

n nn n
R R X Xβ α

+
= +  

 
a) Each factor . H

m mX X  contributes to the estimate with a coefficient equal to 
. n mα β − . This is easy to check just by considering the IIR filter with numerator 

equal to α and denominator equal to 1-βz-1. The effective length is defined when 
the coefficient goes down to a given value, let us say 1/e, in consequence the 
effective length will be defined as: 
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d) 1 11

( ) . ( ) . ( . )H
n nn n

E R E R E X Xβ α + ++
= +  

 
 when the random processes forming the components of the original 

vectors are stationary, the expected value of the input dot product will be the actual 
autocorrelation matrix R and the expected values of the first two terms will coincide. 

 
Thus, 
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. H
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 1 1( ) . ( . ) .
(1 ) (1 )

H
n nn

E R E X X Rα α
β β+ += =

− −
 

 
Obviously, to remove bias and ensuring that the expected value of the estimate 

tends to the actual value α has to be equal to 1-β. 
 
e) 
 
The inverse lemma is: 
  If   ( . . )R A B C D= +  then 1 1 1 1 1 11. .( . . ) . .R A A B D A B C D A− − − − − −−= − +  
 
A particular case is the Woodbury’s identity 
 

1 1 11
1( . . ) . . . .

1 . . .
H H

HA a a A A a a A
a A a
δδ

δ
− − −−

−+ = −
+

 

 
Using the second one (much easy to use in our case) we get: 
 

1 12
1 11 1
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R R
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− −
+ +− −

−+
+ +

 
 = −
 + 

 

 
I.8.2.- 
 
a) S0.S0

H  This is a rank-one matrix (all its columns are proportional each 
other). Being rank one it has only an eigenvalue different from zero. 
The eigenvector associated to this non cero eigenvalue is precisely S0 
normalized, i.e. 

 

( ) 2
0. . .H o o

o o
o o

S SS S S
S S

=    The magnitude square of the vector 

is the eigenvalue. 
 

2 ,...., Qλ λ  are cero and the eigenvector are any set of orthonormal vectors 
each other and with So 
 

b) Any set of orthonormal vectors are valid eigenvectors of the identity 
matrix. The eigenvalues are all equal to one. 

c) The largest eigenvalue and the eigenvector associated to it is given by 
the rank one contribution. 

 

( ) ( )22 2. . . .H S SS S I S
S S

α σ α σ+ = +  

 
the rest of eigenvectors have to be orthogonal to this largest eigenvector. 
In consequence when multiplying any of them by the rank one part the 
dot product will be cero and: 
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( )2 2 2. . . . . . ; 2,H
q q qS S I e I e e q Qα σ σ σ+ = = ∀ =  

 
All the eigenvalues are equal to the contribution of the identity matrix. 
Only the first one has the contribution of the rank one matrix in addition. 

 
I.8.3 .- 
 
The d.c. response equal to 0 dB. Is set as .1 1HA = , where vector 1  contains 1 at every 

component, i.e. 
1

0

( ).1 1
Q

q

a q
−

=

=∑  

 
The output filter power is given by . .HA R A , where matrix R is the autocorrelation 

matrix of the input signal, i.e. 
1 1

0 0

( ). ( ). ( , )
Q Q

q p

a q a p r q p
− −

∗

= =
∑∑  

 
In particular, for q equal 2, the d.c. constraint is a line in the 2-D space where the two 
coefficients stay, and the power is defined by ellipses centered at the origin, which size 
is proportional to the output power of the filter under design. 
 

 
 
If the input is white noise its autocorrelation matrix is the identity and the design 
evolves to: 
 

.1 1 .H H

MIN
A A A=  

 
The Lagrangian (i.e. the objective minus a multiplier per every constraint) is 

( ). . .1 1H HA A Aλϒ = − − . Taking derivatives with respect the real and the imaginary 

parts of the filter coefficients (equivalent to take derivatives with respect HA ) and 
setting them to cero, results on 

Increase output power

Constraint 

Optimum: Minimum 
power staying on the 

constrain line 
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.1 0A λ− =    and   .1A λ=  

 
The Lagrange multiplier is found from the constraint equation 
 

1 1/ 1/ 2
1 .1H Qλ = = =  

 
b) since ( ). . .1 .H H H

n n nA X A A w A A w= + = + . 
 
Signal power     A2 

Noise power ( ) ( )2 2 2 2. . . . . .H H H
nE A w E A I A A Aσ σ σ= = =  

2

22. ASNR
σ

=      A gain of 3 dB. 

 
c) When the noise is not white, the constraint is maintained but the objective to be 

minimized changes. The solution to the new problem is given by  
 

1

1

.1
1 . .1

w
H

w

R
A

R

−

−=    and     ( ). . .1 .H H H
n n nA X A A w A A w= + = +  still holds 

 
Signal power     A2 

Noise Power   ( ) ( )2

1
1. . .

1 . .1
H H

n Hw
w

E A w E A R A
R−= =  

( )12. 1 . .1H
w

SNR A R−=  

 
For the given acf matrix, 

    
2 22

1 1
4 2 4 2 2 22

1 1 1. ; 1 .H
w w

R R
σ γ σ γσ γ

σ γ σ γ σ γ σ γγ σ
− −

 − − −   = = =   − − + +−   
   ; 

1
2

21 . 1H
w

R
σ γ

− =
+

 

 
finally  

 
2

2

2

12. .
1

ASNR
γσ

σ

 
 
 =

  +     

   ¡Increasing correlation decreases gain from the maximum of 

3 dB. For the white noise case! 
 
Just in case the white noise (sub-optimum) filter is used, the SNR is: 
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2

2

2

1.
1

ASNR
γσ

σ

 
 
 =

  +     

   with a permanent loss of 3 dB. With respect the 

optimum gain. This loss increases when increasing the filter order Q. 
 
I.8.4 .- 
 
Given a, we can select it as one of axis for the new orthogonal space. Once this is 
decided, the next vector, to be orthogonal to it, must lie in the subspace orthogonal to a 
which is defined by the projection operator as follows: 
 

.
.

H

H

a aA I
a a⊥

 
= − 

 
 In consequence, the second vector is given by the projection of it 

in the subspace orthogonal to a 
 
In summary, the orthogonal basis defined by vectors a and b is: 

1

2
. .

.

H

H

e a

a ae I b
a a

=

 
= − 

 

  

Yes. This procedure is independent of the components forming each original vector.  
 
Furthermore, given a set of Q vectors of dimension P greater than Q, the orthogonal 
projection is formed as: 

( )

1 2

1 2

1

, ,....,

, ,....,

. . .

Q

Q

H H
PxP

Given a a a

Define a a a

Then A I

α

α α α α
−

⊥

 =  
 = −  

 

 
I.8.5 .- 

The IRR equation is  
1 0

( ) ( ). ( ) ( ). ( )
QP

p q

y n a p y n p b q x n q
= =

+ − = −∑ ∑ , it can be written in 

vector form as: . .H H
nn

y a x b=  where the first component of vector a is equal to one. 
Now setting x(n)=δ(n) then y(n)=h(n), and arranging the vector equation in matrix 
forms 
 

(0 0 0 .. 0 1 0 .. 0
(1) (0) 0 .. 0 0 1 .. 0

1
(2) (1) (0) .. 0 0 0 .. 0

(1)
... .. .. .. 0 0 .. 1

..
( 1) ( 2) ( 3) .. (0) 0 0 .. 0

( )
( ) ( 1) ( 2) .. (1) 0 0 .. 0
.. .. .. .. .. .. .. .. ..

h
h h
h h h

a

h P h P h P h
a P

h P h P h P h

   
   
    
    
    =   
  − − −  
   − −  
     

(0)
(1)

.
..
( )

b
b

b Q

 
 

  
  
  
  



 



Miguel Angel Lagunas 13/08/2007 7 
---------------------------------------------------------------------------------------------------------- 

From this formula matrix H is easily identified. 
 
I.8.6 .- 
 
Being vector [ ](0) (1) .. ( 1) TP p p p Q= −  the idea is to design a filter of Q 
coefficients A such that the response to the filter is a given level (let us say 1 or 0 dB.) 
and to any other signal w(t) with acf equal to R the power of its response is minimal. In 
the case of white noise, this traduces in the norm of the filter vector. In summary the 
formulation will be the following: 
 

min

. 1

.

H

H

A P

A A

=
 

 

(see I.8.3 for details)      The optimum is given by  2
PA
P

=  

 

The signal to noise ratio is, for any filter design, equal to: 

2

22

.

.

HA P
SNR

Aσ
= . Using the 

optimum filter, the resulting SNR is:  

max 22

1
/

Pulse EnergySNR
Spectral density of white noisePσ

= =  

 
I.8.7 .- 
 

a) Yes, since is the quotient of the power at the filter output for signal and noise 
respectively. 

b) Since 
s n

R R R= − (Whenever signal and noise are uncorrelated) then 

. .
1

. .

H

H
n

a R a
SNR

a R a
= −   In consequence the use of the full correlation matrix is 

correct for design purposes. 
c)  

( )

( )( )

1/ 2 1/ 2. . . .. .
. . . .

. .. .
. . .

HH
n n

H H
n n

H HH H

H H H

a R R R aa R a
SNR

a R a a R a

u u v vu v v v
u u u u u u

−

= = =

= ≤ =

 

 
 The equality holds when both vectors are co-linear, i.e. 1.u vρ −=  which 
provides the design to obtain the maximum SNR. Thus, the design equation is: 
 

1/ 2 1/ 21. . . . . .
n n n

R a R R a or R a R aρ
ρ

−= =  
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which is the generalized eigen decomposition of the couple 
n

R R   . At the same 

time, the maximum of the SNR for this design is: 
 

maxSNR ρ=   Then, the maximum eigenvalue of the eigen-decomposition is the solution 
and the optimum filter is given by the maximum eigenvector. 
 

d) Since ( ) ( ). 1 .
s n

R R a aρ+ = −  the objective still is the maximum eigenvalue 

e) Easily concluded from the previous section 
 

f) When 
s

R  is rank-one, i.e. . H
s

R c c= , the eigendecomposition reduces to 

( ). . . . .H
s n

R a c c a R aρ= =   

 
At this moment, note that any constant multiplying the optimum vector does not 
affect its optimum character because the SNR does not change.  
 
As can be seen in the previous formula, the eigendecomposition is not longer 
necessary since the optimum vector, within a constant, can be obtained directly from 
the equation as: 
 

1.
n

a R c−∝  
 
g) Just change Rn by 2.Iσ  in all sections. 

 
I.8.8.- 
 
Since ( )Trace A eigenvalues= ∑ and all the eigenvalues of a positive definite matrix 
are positive removing terms in the sum always produce a lower bound of the trace 
operator. 
 
I.8.9, I.8.10,I.8.11 .- 
 
Use an Algebra text-book like reference [2]. 
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II.13.1 .- 
 
The characteristic function is defined as the Fourier transform of the pdf. A good 
candidate to estimate this function is to use the less committed pdf, i.e. uniform and to 
replace the continuous integral by a sum constrained just to the available samples. In 
summary the estimate of the characteristic function will be: 
 

( ) exp( . . ( ))
i

w j w x iΦ = −∑
)

     Where i covers the set of the N available samples 

The expected value of the estimate is 

   
{ } { }( ) exp( . . ( )) exp( . . ( ))

Pr( ( )).exp( . . ( )). ( ) . ( )
i i

i

E w E j w x i E j w x i

x i j w x i dx i N w

 
Φ = − = − = 

 

= − = Φ

∑ ∑

∑∫

)

 

 
In consequence, to remove bias, the definite formulation of the estimate will be: 

1( ) exp( . . ( ))
i

w j w x i
N

Φ = −∑
)

 

Computing the variance, 
 

( )

( ) ( )

2 2 2

2( ) ( )
2

2( ) ( )
2

2 2
2

22
2 2

2

( ) ( ) ( ) ( )

( )
1 . . ( ) ( )

1 . . ( )

1 ( ) ( )

1 ( )1 . ( ) ( )

jwx i jwx j

i j

jwx i jwx j

i j

i j

E w w E w w

when x i
E e e w and x j are

N
independent

E e E e w
N

w w
N

wN N w w
N N N

−

−

   Φ − Φ = Φ − Φ =      

= − Φ = =

= − Φ =

= Φ − Φ =

− Φ−
= + Φ − Φ =

∑∑

∑∑

∑∑

) )

 

 
It is easy to check that the magnitude of the actual characteristic function is always 
below one. At the same time note that estimate is consistent since it tends to cero as the 
length of the data set tends to infinity. 
 
Note also that the direct estimation of the pdf by the histogram with a given weight or 
window function p(x), is equivalent to the following estimate: 
 

( ) ( ). exp( . . ( ))
i

w P w j w x iΦ = −∑
)

   where P(w) is the Fourier transform of p(x). 

II.13.2 .- 
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We are looking for a non-linear system which maps x to y such that the second pdf is un

 
( )

1Pr( ) .exp( . ) Pr( )
2 2.
Pr( ) 2. . .exp( . )

Pr( ) 2

( ) .(1 exp( . ))

o

o
y g x

o

x x y
Y

dg x Y x
dx y

and
g x Y x

α α

α α

α

=

= − =

= = −

= − −

  
 
II.13.3.-  
 

1
1

R
α

α
 

=  
 

 then 1
2

11
11

R
α

αα
− − 

=  −−  
     The ML estimate is 

1

1

1 . .
1 . .1

H
n

ML H

R X
R

µ
−

−=   

 

performing a few computations 1 .
2

H
n

ML
Xµ =  

 
¡The estimate is identical to the arithmetic mean estimate, independently of α! In fact 

both estimates have variance 2 1
2ML
ασ +

= . In other words, correlation between two 

consecutive samples does not alter the structure of the estimate but increases variance. 
 
II.13.4 .-  
 

Instantaneous estimate  . H
n nxy

R X Y=
(

  averaged estimate  1ˆ . H
n nxy

n
R X Y

N
= ∑  

 
Both estimates are unbiased 
 
The corresponding estimates of the cross-spectral density are 

( ) ( )
. . 1( ) . . . .

.

H
H Hxy

n nxy H

S R S
S w S X Y S

QS S
= =

(
 

( ) ( )
. . 1 1ˆ ( ) . . . .

.

H
H Hxy

n nxy H
n

S R S
S w S X Y S

Q NS S
= = ∑  
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 where Q is the length of the segments and N is the global (overlapped or not to reduce 
variance) number of available segments. 
 
The use of the biased or unbiased estimate for rxy(n) is a relevant issue in this case since 
the Fourier transform is not longer a positive defined function. Windows data dependent 
or independent can be used for the cross-functions in the same framework that they 
were defined for auto-functions within this chapter. 
 
I.3.5 .- 
 
The definition of the acf function of a random process is 1 2( , ) ( ). ( )xr t E x t x tξ ξτ τ = +   

which in its integral form ( )1 2( ). ( ).Pr 1, 2, , . 1. 2x t x t t t d dξ ξ τ ξ ξ τ ξ ξ+ +∫∫ . 
 
The probability function can be re-written as a function of θ as 

( )
( )

1 2

1 2 1

Pr( 1, 2, , ) Pr / , /

Pr( ).

t t t tξ ξ τ θ θ θ θ τ

θ δ θ θ

+ = = = + =

= −
  

This second line formulation obeys to the fact that the parameter defines a realization of 
the random process promoting that, unless we stay on the same realization, the expected 
value of the product defining the acf is cero. In summary the double integral reduces to 
a single integration as follows: 
 

( , ) ( ). ( ).Pr( ).xr t x t x t dθ θτ τ θ θ= +∫  

 
 
II.13.6 .- 
 

( ) .cos( . )x t a w t θ= +  
( ( )) ( ). (cos( . ))aE x t E a E w tθ θ= +  

 (cos( . )) Re exp( ).exp( ).Pr( ).E w t jwt j dθ θ θ θ θ + = = ∫  

 Re exp( ). exp( ).Pr( ).jwt j dθ θ θ =  ∫        

The integral is the characteristic function of the phase evaluated at Ω=1. Since the phase 
is uniformly distributed between –π and π this integral is cero. 
 
And  ( ( )) ( ).0 0aE x t E a t= = ∀  

t t+τ 

Related 
events 

Un-related events 
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In summary, the random process is stationary in mean either if the mean of the 
amplitude is cero or the characteristic function of the phase is equal to cero when 
evaluated at frequency equal to one ( ( ) 11 (Pr( )) 0FT θ Ω=Φ Ω = = = ). 
 
The acf function: 
 

[ ] ( )2

2

2

( ). ( ) ( ). ( ).cos( ( )

( ) cos(2 2 ).
2 2

( ).
2

a

a

a

E x t x t E a E cos wt w t

cos w wt wE

cos w

θ

θ

τ θ τ θ

τ τ θσ

τσ

+ = + + + =

+ + = + = 
 

=

 

 
Since 

[ ]
( )

cos(2 2 )

Re exp( 2 ). ( 2)

E wt w

j wt jw
θ τ θ

τ

+ + =

= + Φ Ω =
 

 
again being the phase distribution uniform the characteristic function evaluated at 
frequency 2 is cero. 
 
Thus, the random process is stationary in its acf whenever the characteristic function of 
the phase is cero at frequency equal 2. 
 
b) When the amplitude is deterministic, it is easy to check that 

 
2

( ) 0 ( , ) .cos( )
2x
aE x r t wτ τ= =  

When w is also a random variable, independent of the phase, remains one steep in 
computing the acf which is to perform the expected value with respect the frequency. 
 

 ( )

(cos( )) cos( ).Pr( ).

Re ( )

exp( ).Pr( ).

w

w

E w w w dw

When the
pdf function
is even

w w dw

τ τ

τ

τ

= =

= Φ Ω = = =

= −

∫

∫

 

 

In summary, ( )
2

( ) . Pr( )
2

a
x

Fourier
r w

Transform
στ =  

And the power spectral density 
2

( ) .Pr( )
2

a
xS w wσ

=  

 
This explains why the bandwidth of wideband FM coincides with the dynamic range of 
the instantaneous frequency. 
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II.13.7 .- 
 
The MEM extrapolation of the acf is just to assume perfect AR modeling and to 
continue ahead with the Y-W equations, i.e. 
 

2
2

3

1 0.5 0.1
10.5 1 0.5 0

. (1)0.1 0.5 1 0
(2)0.1 0.5 0

.. .. .. 0

a
ar

σ  
             =          
     

 

 
Levinson’s algorithm 

1 2
1 1 1

2

2

2
1
2
2 2
2 2
2

0.5 0.5 1.(1 0.25) 0.75
0.1 0.5( 0.5) 0.15
0.15 0.2
0.75
0.5 0.2( 0.5) 0.49

0.2

0.75(1 0.2 ) 0.72

a K

K

a

a K

σ

σ

= − = − = − =
∆ = + − = −

= =

= − + − = −

= =

= − =

 

MEM extrapolation for r3 
2 2

3 1 2 30.1 0.5 0 0.039MEM MEMr a a r+ + = =  
Matlab© routine for Levinson algorithm 
 
%       File LEV.M 
% 
%   Given the set of acf values, the function return in vectors cor(.), 
% par(.) and err(.) the predictor coefficients, the nq-1 parcors, and the nq  
% prediction error power for each successive predictor order. 
% 
% M.A. Lagunas 
%------------------------------------------------------------------------- 
function [coe,par,err,nq]=lev(r); 
nq=length(r); 
err(1)=r(1); 
coe(1)=1;coe(2)=-r(2)/r(1);par(1)=coe(2); 
err(2)=r(1)+coe(2)*r(2); 
for ii=3:nq; 
    delta=coe*r(ii:-1:2)';par(ii-1)=-delta/err(ii-1); 
    err(ii)=(1-par(ii-1)*par(ii-1))*err(ii-1); 
    coe(ii)=par(ii-1); 
    for j=2:round((ii)/2); 
        aus=coe(j);bus=coe(ii-1-j+2); 
        coe(j)=aus+par(ii-1)*bus;coe(ii-1-j+2)=aus*par(ii-1)+bus; 
    end; 
end; 
%------------------------------------------------------------------------- 
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II.3.8 .- 

 
 
 

{ }

{ }

2
2

1( ) ( ) ( )
( ). ( )

x
y x w w

For x
S w indepependent S w S w

A z A z
of w

σ σ−= = + = +  

 

In summary  
2 2 1

1
exp( )

. ( ). ( )( )
( ). ( )

x w
y

z jwT

A z A zS w
A z A z

σ σ −

−
=

+
=   which results in an AMRA model. 

In consequence speech recording, even assuming is pure AR, due to recording noise 
results in an ARMA model. 
 
II.3.9.-    a) 

 
b) ( ) ( ) ( )s n x n w n= −  when using the recursive equation for the deterministic and 
completely predicted signal s(n) results in a special ARMA model 

0 0

( ). ( ) ( ). ( )
Q Q

q q

a q x n q a q w n q
= =

− = −∑ ∑  

and 

x(n)
AR 

w(n)
White
Noise

y(n)

0.1 0.25 
fT
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0 1

2 2

1 1( ) . ( ). ( ) . ( ). ( )
(0) (0)

( )( ) . ????
( )

Q Q

q q

x w w

x n a q w n q a q x n q
a a

A zS w
A z

σ σ

= =

= − − −

= =

∑ ∑
 

c) The problem comes from the fact that s(n) is not a random process but a deterministic 
signal described by a recurrence equation. For this reason it is not longer stationary and 
has not a time invariant power spectral density profile. Modeling x(n) as an ARMA we 
impose stationarity and, in consequence, only the stationary part ot x(n) remains. 
 
 
d) In order to set s(n) as a realization of a random process we need to introduce at least 
one random variable in its modeling. Assuming that the phase of each sinusoid is a valid 
candidate, the solution is 
 

1 1 2 2( ) .cos(2 .0.1. ) .cos(2 .0.25. )s n A n A nπ θ π θ= + + +  
 
where 1θ  and 2θ  are uniformly distributed r.v. 
 
Of course, for this s(n) the recurrence equation is not longer valid. 
 
II.13.10.-  
 
A modulated signal takes the form o modulating waveform acting over a carrier 
waveform as ( ) ( ).cos( )x t a t wt= . Usually the modulating wave is assumed to be strict 
sense stationary  

[ ] [ ]( ) 0 ( ). ( ) ( )aE a t t and E a t a t r tτ τ= ∀ + = ∀  
thus 

[ ]( ). ( ) ( ).cos( ).cos( ( ))aE x t x t r wt w tτ τ τ+ = +  
Note that the carrier, being deterministic, introduces the non-stationarity 

( ) ( )( , ) .cos( ) .cos( (2 ))
2 2

a a
x

r rr t w w tτ ττ τ τ= + +  

In accordance with this result, the power of the random process fluctuates at frequency 
2w as well as any other moment of the correlation function. Since in engineering the 
average power is a key design parameter, it is decided just to keep the average term of 
this time-varying correlation. Formally, it is said that the random process {x} is ciclo-
stationary (periodic) and we keep just the first coefficient of its Fourier series. In 
summary, we define the acf of {x} as: 

( )1( ) . ( , ). .cos( )
2

p

a
x x

p T

rr r t dt w
T

ττ τ τ=∫>  

With respect the discrete o digital modulation case, 

( ) ( ). ( / )
N

N
k N

x t Lim a k p t k r→∞
=−

= −∑   for / /N r t N r− ≤ ≤  and being r the symbol 

velocity (bauds), a(.) the information symbols draw from a discrete constellation, and 
p(.) the pulse shape (either full or partial response). 
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Assuming that the symbol sequence are stationary, it can be defined is acf in the same 
manner than in the continuous wave modulation case seen previously. 

[ ] [ ]( ). ( ) lim ( ). ( ) . ( ). ( )
N N

N
k N n N

E x t x t E a k a n p t kT p t nTτ τ→∞
=− =−

+ = − + −∑ ∑  

 
with k=m and k-n=l 
 

( , ) lim ( ). ( ). ( ( ). )x N ar t r l p t mT p t m l Tτ τ→∞= − + − −∑∑  
 
Note that this r.p. is also ciclo-stationary since ( , ) ( , )x xr t r t Tτ τ= +  
 And computing the first term of its Fourier series 
 

1( ) lim . ( , ).
(2 1)

NT

x N xNT
r r t dt

N T
τ τ→∞ −+ ∫>  

since N large and full-response pulses 
 

( ). ( ( ) ). ( )
NT

pp
NT

p t mT p t l m T dt r lTτ τ
−

− + − + −∫ >    i.e. the acf for finite energy signals 

and the change of variables is: 

 
which means that for a given l there are ( )2 1N l+ −  terms. In consequence: 

(2 1 )
( ) lim . ( ). ( )

(2 1)

N

x N a pp
l N

N l
r r l r lT

N T
τ τ→∞

=−

+ −
= −

+∑  

In summary: 
 

( ) . ( ). ( )x a pp
l

r r r l r lTτ τ
∞

=−∞

= −∑  

 

n

k 

Example 
for N=3 

m 

Add 
diagonals 
with index 

l 
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Note that the acf defined before is just the convolution of the symbols’ acf with the acf 
of the signaling pulse 
 
In fact, the power spectral density is the product of the energy spectrum of the pulse by 
the FT of the acf of the information symbols sequence. 
 

( ) . ( ). ( ).exp( / )x pp a
q

S w r S w r q jqw r
∞

=−∞

= −∑  

 
II.13.11.-  
 
See II.13.13 
 
II.13.12.- 
 

.n nX a S w= +  

( ) ( ) ( ) ( )2 2
0 2

1, , . . . . .H
n na S K Q Ln X a S X a Sσ σ

σ
 Λ = − − − −   

 
a) 

( )max ; 0 ; 0 . .H
nML a Ha S X a S

a
∂Λ

= Λ = = −
∂

     and      . 1 .
.

H
Hn

nML H
S Xa S X

QS S
= =  

 
-- 

( ) ( )
2

2 2
0 2

1 ., . . .
H

H
n n

S SS K Q Ln X I X
Q

σ σ
σ

  
 Λ = − − − 
   

 

-- 
 
b) 
 

since  . HS SP I
Q

 
= − 

 
  and  HP P=  together with . HP P P=  allows writing down the 

likelihood in a more compact form. 
 

( ) ( )2 2
0 2

1, . . .H
n nS K Q Ln X P Xσ σ

σ
 Λ = − −    

 
Now, because ( ) ( ). .H HTrace u v Trace v u=  then 

. . . . . .H H H
n n n n n nX P X Trace X P X Trace P X X   = =     

and 
 

( ) ( )2 2
0 2

1, . . . H
n nS K Q Ln Trace P X Xσ σ

σ
 Λ = − −    
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c)  

( ) { }
1 1 1

2
2 2

0 00

, Pr Pr, ,

N N N
n n

N n
n nn

Independent X XS Ln Ln LnS Ssample vector
σ σ σ

− − −

= ==

      Λ = = = Λ      
     

∑ ∑∏
 and the log-likelihood results in 
 

( ) ( )

( )

1
2 2

1 2
0

1
2

1 2
0

2
1 2

, . . ( ) . . .

1. . ( ) . . .

. . ( ) . .

N
H

n nN
n

N
H

n n
n

NS K N Q Ln Trace P X X

NK N Q Ln Trace P X X
N

NK N Q Ln Trace P R

σ σ
σ

σ
σ

σ
σ

−

=

−

=

Λ = − − =

 
= − − = 

 

= − −

∑

∑  

 
where R  is the estimated auto covariance matrix. 
 
d) 

2 2. . . .H H
n nE X X a S S Iσ  = +   

e) 

( ) ( ) ( )

( ) ( )

( ) ( )

. .
. . . /

1 . .

1 . .

H
H

H

H

S R S
Trace P R Trace R S S R Q Trace R Trace

Q

Trace R Trace S R S
Q

Trace R S R S
Q

 
= − = − =  

 

= − =

= −

 

f) 

( )

2
2 2

2

2 4

max ( , ) ; 0

. 10 . . . .

N
ML N

H

dS
d

N Q N Trace R S R S
Q

σ
σ σ

σ

σ σ

Λ
= Λ =

 
= − + − 

 

 

and the ML estimate of the noise power is  ( )2 1 1. . . .H
ML Trace R S R S

Q Q
σ

 
= − 

 
 

g)Using the acf of section (d) the new expression for the expected value of the noise 
covariance follows 
 

{ }2 22 2 2 21 1
MLE a Q Q a Q Q

Q Q
σ σ σ

  
  = + − +      

 

 
                          Trace(R) 
And 

2 2 1
ML

QE
Q

σ σ −  =   

h) 
      Using the estimates of the complex envelope and the noise power, the likelihood 
reduces to 
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( ) ( )2
1 . . 1MLS K N Q Ln σ Λ = − −   and   

( ) ( )

( )

2max min min ( ) ...

1max . . .

ML ML

H

S S Ln Trace R

S R S
Q

σ   = Λ = = − =  
 
 
 

 which is the maximum of 

the Periodogram (Welch procedure) of the available data. 
 
II.13.13.- 
 

a)  ( )1 2 1 .
2 1x x xE P N P P

N
  = − =  −

)
 unbiased 

b)  ( ) ( )2
2 2var x x xP E P E P   = −   
) ) )

  the second term is the previous section and the 

second term is: 
 

( )

( )

2 2 2 2 2
2 2

2 2
2

1 1( ). ( ) (0) 2. ( )
(2 1) (2 1)

1 2. ( )
(2 1)

x x x
n m n m

x x
n m

E P E x n x m r r n m
N N

P r n m
N

   = = + − =   − − 

= + −
−

∑∑ ∑∑

∑∑

)

 

in consequence 

( ) ( ) ( )( )
1

2 2 2
2 2

1

1
2

1

1 1var 2. ( ) ( ). 2 1
(2 1) (2 1)

1 . ( ). 1
(2 1) (2 1)

N

x x x
n m q N

N

x
q N

n m q
P r n m r q N q

m pN N

q
r q

N N

−

=− +

−

=− +

− =
= − = = − − =

=− −

 
= − − − 

∑∑ ∑

∑

)

c) 
When the number of available data N tends to infinity 

( )
1

2 2 2

1

1 1 1var . ( ) . ( ).
(2 1) (2 1)

BN

x x x
q N B

P r q Parseval S f df
N N T

−

=− + −

 
= = =  − −  

∑ ∫
)

 

 
Now assuming that the spectral density is flat in the bandwidth [-B,B] 
 

i.e.  ( ) .
2 2

x
x

P fS f
B B

 =  
 

∏    then      
2

2var ( )
2 .(2 1)

x
x

PP
B N T

⇒
−

)
 

 
Note that the denominator is the product of the signal time duration by the signal 
frequency duration. This product is now as the degrees of freedom in the estimation 
procedure and they reduce always (with the proper estimation procedure) the variance 
of the estimate. A brief explanation for this fact follows: Since the random process has a 
bandwidth of 2B, the coherence time, i.e. the time we have to wait to label independent 
records is equal to the inverse (approx.) 1/2B sec. And, in consequence, the number of 
independent records, which dictates the possible variance reduction, is given by the 
quotient between the time support of the data and the coherence time. This is just the 
denominator of the asymptotic expression of the variance depicted above. 
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e) 

  
and     2( ) . ( 1) . ( ) ;x xE P n E P n E x nβ α     = − +     

% %  assuming that the r.p. is stationary 
 

( ) . ( ) . ;x x xE P n E P n Pβ α   = +   
% %     and   ( )

1x xE P n Pα
β

  =  −
%  from which is easy to 

deduce the adequate choice of the filter parameters to obtain an unbiased estimate. 
 

f) when  2

1

1( ) . ( )
n

x
m n N

P n x n
N = − +

= ∑
(

  then           
2 21 ( ) ( )( ) . ( 1)

1x x
N x n x n NP n P n

N N N
− −

= − + −
−

( (
 

thus, the estimate is similar to the previous one when 1
N

α =  and 11
N

β = − . The only 

difference is the last term which can be considered of low impact in the estimate the 
power at instant n mainly for N large. Also, this term does not longer exist for n<N and 
x(n) is cero for negative arguments. 
 
II.13.14.- 
 

It is a pdf since  2

1 1 1. .arg ( ) 1
1

da tg a
aπ π

∞∞

−∞−∞

= =
+∫    , the mean is cero, but the variance 

2

2

1 1. (1 arg ( ))
1

a da tg a
aπ π

∞
∞

−∞
−∞

= − = ∞
+∫          !!is infinite!! 

 
Nevertheless, the Cauchy distribution is preserved when adding Cauchy r.v. since it is 
invariant to the convolution operator. 
 

( )22 2 2

1 1 1 1 1. . .
1 11

da
a bb aπ π

∞

−∞

∝
+ ++ −∫  

The characteristic function is 2

1 cos( ) ( )
1

wa da w
aπ

= Φ
+∫  to solve this integral, note that 

(0) 1Φ =  and 
2

2 ( )w
ω

∂ Φ
= −Φ

∂
 being ( ) ww e−Φ =  the solution  

 
II.13.15.- 
 
Done within the corresponding section of this chapter. 
 
II.13.16.- 
 
Sentences are correct when applied to a finite record length but no to describe global 
features of the random process to which input and output records belong. Note that there 
is implicit the assumption of circular convolution in sentences that does not longer 
apply for the convolution of the input with the impulse response. In fact, it is easy to 

11 .z
α
β −−

2 ( )x n ( )xP n%
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prove that the periodogram for a non white random process is always biased. This bias 
is introduced by the convolution of the actual spectral density with the lag-window 
transform. This lag-window is implicit in all the sentences, from (a) to (d). 
 
II.13.17.- 
 

( )

( ) ( ) ( )
( ) ( )1

1

. .

. .

)

Pr , Pr .
det

H
z zz

x xx xy H
z z

y yx yy

z m R z mo

z

m r rx
z E z R R G D G

m r ry

a
Kx y z e

R

−

−

− − −

    
= = = =   

     

= =

 

We are going to use the following diagonalization of the acf  matrix: 
 

( ) 11 1
1

1 1

1 0 . . 0 1 .
. .

. 1 0 10
xx xy yy yx yy xy

z
yy yx yy

r r r r r r
R

r r r

−− −
−

− −

   −  − =    −       
 

 
b) 

( ) ( )

1

1

1 1 .
.

2 0 1

1 . .

2

xyy xy

y

x yy xy y

y

x mx r r
y mx

x x m r r y m

x y m

−

−

−  − 
=      −     

= − − −

= −

 

c) 
 

( ) ( ) [ ] ( )

( ) ( ) ( )

11
1

1

12 21 1

1. . 0
. . 1 2 . .

20

1 . . . 2 .

HH xx xy yy yx
z zz

yy

xx xy yy yx yy

xr r r r
z m R z m x x

xr

x r r r r x r

−−
−

−

−− −

 −   − − = =     

= − +

 

 
d) 
 

( ) ( ) ( )( )12 1
2Pr .exp 1 . . .xx xy yy yx

x K x r r r ry
−−= − −  

 
   Gaussian and it can be formulated as   
  

 ( ) ( ) ( ) ( ) ( )11 11. . . . . . . .
H

x y x yxx xy yy yxyy xy yy xy
x m r r y m r r r r x m r r y m

−− −−   − − − − − − −     

 
Note that, in a more general approach, in the last formula both x and y have been 
considered vectors instead mere scalars. In fact the previous presentation is still valid in 
all the respects for this general case. 
 
In summary, the conditional mean of x is given by: 
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( )1. .x yyy xy
x m r r y m−= + −)  

 
This provides the optimum conditional mean estimate of a vector x from a data vector y 
and the corresponding means and auto and cross correlation matrices. This is also 
known as the Wiener filtering method. 
 
e) The variance is also derived from the conditional distribution 
 

( ) 11. .
xx xy yy yxx x

C r r r r
−

−= −) )  

 
f) 

( ) ( )
( ) ( ) ( )

2

2 2

.Pr .

.Pr . 2. .Pr .

xECM x x dxy

x xx dx x x x dxy y

≡ − =

= + − −

∫

∫ ∫

)

) )
 

and to find the minimum ECM 
 

( )

( ) ( )min

2. 2. .Pr . 0

.Pr . Prx
ECM

ECM xx x dxyx

x xx x dx Ey y

∂
= − =

∂

 = =   

∫

∫

)
)

)

 

g) 
 
Already done previously. 
 
II.13.18.- 
 

2

1

1 (1) 0
( ) 1 (1). ( ) (1) 1

0
x

b m
H z b z r m b m

else

−

 + =
= − = − = ±



 

then 
( ) ( ) ( ) ( )2 1 1. (1) 1 (1) (1). 1 (1). . 1 (1).xS z z b b b z b z b z− −= − + + − = − −    where the first term is 

minimum phase 
 
The procedure will be the following: 
 

- Given x(n) for n=0,N-1 
- Estimate the acf function using the unbiased estimate when N>>1 
- Use r(0) and r(1) form the polynomial and find out two roots homothetic, 

with respect the unit circle 
- b(1) is the root inside the unit circle. 

 
II.13.19.- 
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Descriptive of the role of non linear systems for linearizing power amplifiers. 
 
II.13.20.- 
 

( ) 0 0

0

. ..

2

( ) 1 3 1 1
( 1) . . . . 1 3 1
( 2) 1 1 3

Hj w t jwj
n n n n n

j w

x n
x x n x a e e e w C E w w

x n e

θ

−     
      = − = + = = − −     
    − −     

 

a) with . jb a e θ=  ,i.e. the low pass complex envelope, 
 

( ) ( )
( ) ( ) ( )

( )

0

1
1

2 2
2

Pr .Pr .Pr( )

Pr .exp . . . .

Pr .exp /

n

n

Hn
n n

b b

xb K bx b
x K x b S C x b Sb

b K b m σ

−

=

 = − − − 

 = − − 

 

b) Taking logarithms and removing constant irrelevant for the minimization procedure 
 

( ) ( ) ( )

( )

( ) ( )

2
1

2

1
2

1
2

1
2

. . . .

min

0 . . .

. .

1. .

H b
n n

b

MAP b

H b
n

b

H b
n

b
MAP

H

b

b m
b x b S C x b S

b b

b m
S C x b S

b
mS C x

b
S C S

σ

σ

σ

σ

−

−

−

−

−
Λ = − − − −

= Λ

−∂Λ
= = − −

∂

+
=

+

 

c) 
 

( ) ( ) ( )
( )

( )

1

1

1

1

. . . .

min

0 . . .

. .
0. .

H
n nML

ML b ML

H
n

H
n b MAP ML

MAP H
b MAP b

b x b S C x b S

b b

S C x b S
b

S C x b b
b

b mS C S
σ
σ

−

−

−

−

Λ = − − −

= Λ

∂Λ
= = −

∂
→ ∞ ⇒

=
→ ⇒

 

d) 

[ ] ( )1 1

1 1

. . . . .
. . . .

H H
n

ML H H

S C E x S C S b
E b b

S C S S C S

− −

− −= = =   unbiased estimate 
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( ) ( ) ( ) ( )

[ ]

( ) ( )

1
2

1

1 1

1 1

1 1

1 1

. .
var . . .

. .

. . . .
. .

. . . .

. .
. . . . .

. . . .

H

ML ML ML ML MLH

H H
n

MLH H

H
H

n nH H

S C S
b E b b b b E b b b b

S C S

S C S S C x
b E b b E

S C S S C S

S C C S
E x b S x b S

S C S S C S

−

−

− −

− −

− −

− −

  
 = − − = − − =         

     
  = − − =             

 = − − = 

=
1 1

1 1 1

. . 1. . .
. . . . . .

H
H

n nH H H

S C C S
E w w

S C S S C S S C S

− −

− − −
  = 

 

 
It is easy to check that it coincides with the Cramer-Rao bound. 
 

d) When the noise is white and the number of available samples is N 
 

( )
( )

2
2

12

1var 0
. .

ML H
b when N

NS S

σ

σ
−= = ⇒ ⇒ ∞  

 
If there are two lines then 

 
( )

( ) ( ) ( ) ( )

1 2 1 2

11 1 1

1
1. 2. . .

2

. . . . ; . . . . .

n n n n

H H H
n n ML n

b
x b S b S w S S w S b w

b

b x S b C x S b b S C S S C x
−− − −

 
= + + = + = + 

 

Λ = − − =

 

Given the two frequencies the complex envelopes are estimated accordingly with the 
last expression. 
 
When both frequencies are unknown, the use of any spectral estimation procedure to 
locate their positions is not longer optimum. In fact the ML estimate of the locations of 
both frequencies is formulated as follows: 
 

( )
( )

1 2,

1 1 1

11

min

. . . . . . . . . .

. .

S SML

H H H
n n

H

S S

S x I C S A S C I S A S C x

where A S C S

− − −

−−

= Λ

   Λ = − −   

 =  

 

 
When N vectors of independent data are available 
 

( ) 1 1 1

1

0

. . . . . . . . .

1 .

H H

N
H

n n
n

S Trace I C S A S C I S A S C R

where R x x
N

− − −

−

=

    Λ = − −    

= ∑
 

 
In addition when the noise is white 
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( )1 2

1

,min . . . .H H
S SML

S Trace I S S S S R
−   = −      

 

 
The expression looks easy but it entails a great complexity for searching the two 
frequencies that minimize the trace. (See course notes of Arrays for a detailed 
description of the problem and sub-optimum solutions). 
 
II.13.21.- 
 

a)  ( )
1

2
1 1

1 . . 1var
1 . .1 1 . .1

H
n

ML MLH H

R x
R R

µ µ
−

− −= =  

b) ( )2 1 . .11 . var
1 .1 1 .1

HH
n

H H

Rxµ µ= =% %  

c)  

 
( )

( ) ( )

max
1 1

max

max max
2

1 10
1 . .1 . 1 .1

1 . .1
0

1 .11 .1

H H

H

HH

when Q tends to cero
QR

R
when Q tends to cero

Q

λ
λ

λ λ

− −
≤ < = → ∞

≤ < = → ∞
 

d) 

( ) ( )

( )

21 2

1/ 2

1/ 2

1 2

1 . .1 . 1 . .1 1 .1

.1

.1

1 . .11
1 . .1 1 .1

H H H

H

H H

R R Q

u R
use

v R

and

R
R

−

−

−

≥ =

=

=

≤

        

 they are equal only for u proportional to v, i.e. when the samples belong to a white 
random process. 
e) 
done 
 
II.13.22.- 
 
a.- ( ) (1). ( 1) ( )x n a x n v n= − − +   multiply both sides by x(n+m) and taking expectations 
we get   2( ) (1). ( 1) . ( ) 0xx xx vr m a r m m mσ δ= − − + ∀ ≥ . Thus for any m greater than cero 

( )(1)
( 1)
xx

xx

r ma
r m

= −
−

 

b.- Since {x} and{w} are statistically independents 2( ) ( ) . ( )yy xx wr m r m mσ δ= +  Using the 
taps involved in the proposed estimate, 



Miguel Angel Lagunas 13/08/2007 26 
---------------------------------------------------------------------------------------------------------- 

2(0) (0) ; (1) (1)yy xx w yy xxr r r rσ= + =  and 2

(1)
(1) (0) (1).(1)
(0) 11

(0)

xx

yy xx

wyy

xx

r
r r a SNRa
r SNR

r
σ

−
= − = =

++

)  

c.- 2( ) ( )yy xx ws w s w σ= +  (Just use FT in the acf formula of section (b). 
 The model for {y} is AR plus a constant, in consequence, the resulting model for 
the obsevartion r.p. is ARMA (1,1). 
d.- 

 

( ) ( ) ( )
( ) (1). ( 1) ( )

( ) ( ) (1).( ( 1) ( 1)) ( )
( ) (1). ( 1) [ ( ) (1). ( 1)] ( )

x n y n w n
because x n a x n v n
y n w n a y n w n v n
or y n a y n w n a w n v n

= −
= − − +

− = − − − − +
= − − + + − +

 

clearly y(n-2) does not depends neither w(n) not w(n-1) resulting 
 

(2)
(2) (1). (1) (1)

(1)
yy

yy yy
yy

r
r a r a

r
= − − − − − > = −  

also 2
2

(1) (1) (1). (0)

(1) (1)
(0) (0) (0) (0)

(1) (2)

yy xx xx

yy yy
w yy xx yy yy

yy

r r a r

r r
and r r r r

a r
σ

= = −

= − = + = −
 

 
II.13.23. 
a.- Just assigning the following vectors: 

[ ]H1...111 =  y [ ]HNNNNN 12...21 −−+−+−=  
the rest is straight forward. 
b.- Since [ ]N1=Φ  thus 

 [ ] 






 −
=








=








=ΦΦ

S
N

NNN
NN

N HH

HH

H

H
H

0
012

.1.
.11.11.1.  from which the inverse can be 

found. 

c.- The likelihood is ( ) 2

2
.

.
σ

aX
cteLn

Φ−
−=Λ  since the noise is white. Taking derivative 

with respect Ha  and setting to zero: 

( ) 0.. =Φ−Φ aXH  o bien ( ) Xa HHML ...
1

ΦΦΦ=
−

 

The expected value is: ( ) ( ) ( ) ( ) [ ] aaXEaE HHHHML =ΦΦΦΦ=ΦΦΦ=
−−

.......
11

 Which 
proves that the estimate is unbiased. 
 
d.- The form of the estimate is: 

X
SN

NX
NS

N
B
A

H

H

H

H

ML

ML

.
/

)12/(1.1.
/10
0)12/(1








 −
=















 −
=








   Thus the estimates are: 

S
XNBy

N
XA

H
ML

H
ML .

)12(
.1

=
−

=  
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e.- The variance will be:   
 

( ) ( ) ( ){ } ( ){ }

( ) ( ) { } { } ( ) ( )

( )

1 1

1 1 1 2
1

1 2 2

. . . . . . . .

using
. . ....... . . .

. . . .

1/(2 1) 0
. . .

0 1/

HHML ML H H H H

HH H H H H
H H

H

E a a a a E X a X a

E X a
a a

N
S

σ

σ σ

− −

− − −
−

−

  − − = Φ Φ Φ − Φ Φ Φ − =     

 = Φ Φ Φ − Φ = Φ Φ Φ Φ Φ Φ =  = Φ Φ Φ Φ

− 
= Φ Φ =  

 
 
Where both terms tend to zero when the length tends to infinity. 
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III.10.1.- 
 

( )
( )

( )
( )

( ) ( )
( )

22 22
020

2 2

22 2
0

1
. ( )

xx

xx

A z
S z

A z A z

A z
S z A z

A z

σ σσ σ

σ σ
−

+
= + =

+
=

         

since the right hand term is cero for those samples above Q, the inverse transform of the 
length hand term verifies: 

1

( )* ( ) 0 1

( ) ( ). ( ) 0 1,

x

Q

x x
q

r m a m m Q

r m a q r m q m Q
=

= ∀ ≥ +

+ − = = + ∞∑
 

From these extended Y-W equations, given the acf of the random process, the 
coefficients of the denominator of the model can be obtained. 
 
Filtering the original data with the coefficients obtained before, the output is a pure MA 
process 

 
 
Since the spectral density is  ( ) 22 2

0 .yyS w Aσ σ= +  , the two parameters can be derived 
from the first two terms of the acf of the new data record as: 
 

( )

( )

2 2 2
0

0

1
2

0

0 . ( )

1 . ( ). ( 1)

Q

y
q

Q

y
q

r a q

r a q a q

σ σ

σ

=

−

=

= +

= +

∑

∑
  from which 2

0σ  and 2σ  can be obtained 

 
III.10.2.- 
 
From a bank filter approach to spectral estimation, the filter associated to given value of 

the Periodogram is SA
Q

=  this filter results from the following minimization problem: 

. 1 (0 . )

.

H

H

MIN

A S steers the desired frequency dB response

A A with the lowest response to white noise

=
 

 
Moving the same arguments to the case when interference is present at iS  results in the 
following problem: 

{ }x  
( )A z  

{ }y
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[ ] [ ]. 1 0 . 1

.

H H H
i

H

MIN

A S S or A S

with A A

= =
 

 
the minimization is as follows: 
 

( ). . 1 . ; 0

. 0 .

H H H
HA A A S

A
A S or A S

λ

λ λ

∂ℑ
ℑ = − − =

∂
− = =

    taking this solution to the constraint equation 

 

( ) ( )

( )

1

1

. . 1 . .1

. . .1

H H H H

H

S S or S S

and

A S S S

λ λ
−

−

= =

=

      since the spectral estimate is 
. .
.

H

H

A R A
A A

 

 

then   
( ) ( )

( )

1 1

1

1 . . . . . . . .1ˆ ( )
1 . . .1

H H H H

xx iH H

S S S R S S S
S w w w

S S

− −

−= ∀ ≠  

 
III.10.3.- 
 
For every frequency, denoted with index l0, the estimate is and average of the 
surrounding DFT samples. 
 

 
 
In consequence, the estimate is given by the convolution of the averaging function w(n), 
moved to frequency l0 with the original sequence 
 

0( ). ( ).exp( 2 / )
Q

q Q

w q x n q j l n Nπ
=−

− −∑  

 
The procedure  is equivalent to modulate the original data, in such a way that index l0 
moves to the cero frequency, and then a low pas filter W(l) is applied 
 
 
 
 

0l

l

Data DFT 
Averaging

filter 
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MAJOR DRAWBACKS 
 
-Averaging in the frequency domain does not take into account that the phase of the 
DFT may produce undesired cancellations. A better procedure is to average directly the 
Periodogram samples. This implies that the equivalence at the time domain will be the 
convolution of the sample autocorrelation with the inverse Fourier transform. 
- The equivalence at the time domain is not strict since a finite support is used in the 
frequency domain. This implies that the time support of the time window may exceed 
the duration of the original record. 
 
III.10.4.- 
 
See the solution in A. Papoulis “The Fourier Integral and its applications” a pioneer 
work (first book) describing the role of Fourier transform in electrical engineering and 
communications. 
 
III.10.5.- 
 
The problem of 2-D spectral estimation is fully described in chapter V of these course 
notes. This section of chapter V is easy to read from the background obtained from this 
chapter. The exercise is solved for completeness here. 
 
The filter is ( )1, 2a n n  

          
Being ( ),w ψ the frequencies corresponding to the 2D Fourier transform of indexes n1 
and n2 respectively, the frequency response of the filter is: 

( ) ( ) [ ]( )
1 0 2 0

, 1, 2 .exp . 1 . 2
QP

n n
A w a n n j w n nψ ψ

= =

= − +∑ ∑  

or ( ), .HA w a Sψ =  where 

 
[ ]
[ ]

(0,0), (1,0),..., ( ,0), (0,1),..., ( ,1), (0, 2),...., ( , )

1,exp( ),.., exp( ),exp( ),..., exp( ),exp( 2 ),.., exp( )

H

H

a a a a P a a P a a P Q

S jw jPw j j jPw j jQ jPwξ ψ ξ ξ

=

= + +
 

the filter output is 

[ ]
1, 2

( , ) ( 1, 2). ( 1, 2) .

( , ), ( 1, ),.., ( , ), ( , 1),.., ( , 1),..., ( , )

H

n n

H

y n m x n n m n a n n a x

with x x n m x n m x n P m x n m x n P m x n P m Q

= − − =

= − − − − − − −

∑

The filter design  

n1 

P 

n2 
Q 
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. 1

. .

H

H

MIN

a S

a C a

=
     with  , , , ,

,

1ˆ. .
.

H H
n m n m n m n m

n m

C E x x or its estimate C x x
N M

 = =  ∑  

 
The power and the density estimates are: 

     ( ) ( )
1

1 2

. . . .1, . . ,
. . . . .

H H
H

xxH H H

a C a a C a
P w a C a and S w

a C a a a a C a
ψ ψ

−

− −= = = =  

 
III.10.6.- 
 
Given the 2D predictor  ( 1, 2)a n n , the first problem is to decide which sample is going 
to be predicted. At least four of them are possible. Note that the concept of causality, 
usual in 1D is lost. 

  Assuming that this corner is selected, the 
predictor coefficient for this lag will be forced to be one. 
 

.1 1Ha =   where [ ]1 0,...0,1( ,1),0,..,0H position P=  Now to minimize the prediction error 

we need to minimize . .H

MIN
a C a  

 

The solution is 
1

1

.1
1 . .1H

C
a

C

−

−=  the prediction error is 1
1

1 . .1H C
ξ −=  and the spectral density 

estimate, i.e. the prediction error divided by the frequency response of the linear 

predictor is 
1

21

1 . .1ˆ ( , )
1 . .

H
LP
xx H

C
S w

C S
ψ

−

−
=  

 
It is NOT possible to say that this estimate is a maximum entropy estimate as it was in 
1D, since the acf support used for the filter computation exceeds the size of the 
predictor. To see this in a clearer manner, let us formulate the MEM estimate as it was 
in 1D 
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( )

( ) ( )

( , ) .

( , ).exp . 1 . 2 . . 1 , 2 1, 2 ,

MEM
xx MAX

MEM
xx

Ln S w dw d

subject to

S w j w n n dw d c n n n n P Q

ψ ψ

ψ ψ ψ+ = ∀ ≤  

∫∫

∫∫
 

 
assuming P and Q equal to 1. the number  of values of matrix C  used to derive the 
MEM estimate will be 9 (i.e. (-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0) and (1,1)). 
 
For a linear predictor of 9 coefficients the matrix involved requires 37 acf values. 
Clearly the support or basis information is different. 
 
MEM in 2D has to be computed iteratively (see references hereafter). 
 
III.10.7.- 
 
Being 0 1 1, ,...., Qa a a −  the set of vectors containing the optimum linear predictors for a 
given random process. Due to the different lengths (in increasing order), it is easy to 
check that 0 1 1, ,..., QA a a a − =    is upper triangular. At the same time, due to the fact that 
the forward and the backward predictors for a stationary random process are equal, the 
mentioned matrix diagonalizes the acf matrix of the process. 
 

( )0 1 1. . , ,..,H
QA R A diag ξ ξ ξ ξ−= =   where the elements of the diagonal are the prediction 

error powers for the successive orders contained in matrix A . In summary: 
 

. .HA R A ξ=  and, in consequence  . .HR A Aξ=  and 1 1. .HR A Aξ− −= . 

 
Since matrix of the prediction errors is diagonal, this last expression can be further 
developed showing its explicit dependence on the linear predictors as: 
 

1
1 1

2
0

.
. .

HQ
H q q

q q

a a
R A Aξ

σ

−
− −

=

= = ∑      Multiplying both sides by .HS  and by .S  and taking the 

inverse we obtain 
 

( 1) 1 1 12

2
0 0 ( )

1 1 1( )
1 1. . .

( )

MLM
xx Q H Q Q

H
q MEM

q qq xx q

S w
S R S a S

S wσ

− − − −

= =

= = =

∑ ∑
      or 

 
 

1

0( 1) ( )

1 1
( ) ( )

Q

MLM MEM
qxx Q xx qS w S w

−

=−

= ∑   In other words, The MLM estimate, being the “parallel 

union” of successive MEM estimates will have always poorer resolution than the 
corresponding MEM estimate for the same order or equal size of predictor MEM or 
filter MLM. THIS IS NOT LONGER TRUE FOR NMLM WHICH HAS SUPERIOR 
PERFORMANCE IN TERMS OF LOW SIDELOBE AND RESOLUTION THAN 
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MEM. Only when the process under analysis is actually and AR, the order of the 
predictor matches perfectly the model order and the number of data samples are above 
ten times the order MEM will be superior to NMLM. 
 
III.10.8.- 
 

( )
2

0 0

2 22 2
0 0 0 0 0 0

. . .

. . . . . .

HR S S I

R S S S S S S

α σ

α σ σ α

= +

= + = +     thus  0

0

S
S

 is the eigenvector and 

( )22
0. Sσ α+  is the eigenvalue 

 
III.10.9.- 
 

( ) ( 1) ... ( 1) 1
( 1) ( ) ... ( ) (1)

. 0
... ... ... ... ...

( 1) ( 2) ... ( ) ( 1)

r m r m r m Q
r m r m r m Q a

P Q

r m P r m P r m P Q a Q

− − +   
   + −    = ∀ ≥
   
   + − + − + − −   

 

 
This system of equations  . 0

e
R a =  is over determined and has not a solution, unless the 

estimate is perfect and the order matches the model order. In general, there is no a 
solution for it. 
 
One way out is to match the systems of equations in the MSE sense, i.e. find vector a  

such that 
2

. 0
e

R a −  is minimized, of course with the constraint that the first coefficient 

of the unknown vector is equal to one. 
 

. . .

.1 1

H H
e e MIN

H

a R R a

a =
  the solution to this problem is  

( )
( )

1

1

. .1

1 . . .1

H
e e

H H
e e

R R
a

R R

−

−=  

 
III.10.10.- 
 
See next exercise. 
 
III.10.11.- 
 
Since we are looking for two frequencies, two equations are enough to find them. These 
two equations reflect than the signal, without noise, are perfectly predictable since the 
signal is the solution of a deterministic differential equation. To set these two equations 
we use all the data available and, in order to do this, we have to select the forward and 
backward equations for the two border samples x(0) and x(N-1). This is correct since 
pure sinusoids present the same forward and backward evolution. 
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(0)
(0) (1) ... ( 3) ( 2) (1) ( 1)

.
( 1) ( 2) ... (2) (1) ... (0)

( 2)

a
x x x N x N a x N

x N x N x x x
a N

 
 − − −     =    − −   
 − 

 

in vector form .X a x= . Now, since the system is over determined, we take into account 
the presence of white noise by imposing that the solution has to minimize its response to 
the noise. This is equivalent to take the solution of the above system with the minimum 
norm among all the possible solutions. 
 

.

.H

MIN

X a x

a a

=
    the solution is  ( ) 1

. . .H Ha X X X x
−

=  and the spectral estimate is derived 

based in the fact that the roots of the polynomial formed by the vector lie in one circle 
inside the unit circle, but two of them must lie in the frequencies corresponding with the 
location of the two frequencies contained in the data record. In summary, the two major 

peaks of 2
1ˆ ( )
.

xx H
S w

a S
=  will coincide, or close depending on the signal to noise ratio, 

to the actual frequencies. 
 
Since ( ).HX X  is 2x2, the product by vector x will be 2x1 

 

( ) 1 1
. .

2
HX X x

β
β

−  
=  

 
 and 

[ ] { } { }( ). 1 2 . . 1. 2.Ha S X S DFT signal forward DFT DFTsignal backwardβ β β β= = +
 
Then, the resulting procedure is basically the combination of two period grams 
weighted in such a manner that they null out at the actual frequency locations. 
 
The similarity wit MUSIC or, much close to the pioneer work of Pisarenko, can be 
easily viewed when, instead of minimum norm from and over determined system of 
equations, we force unity norm with minimum prediction error ( when vector a  has 
been extended previously with anew coefficient a(N-1) in order to leave cero in the 
second term) 
 

2

. 1

.

H

MIN

a a

X a

=
      the solution to this system is the minimum eigenvector associated with 

matrix ( ).HX X . In fact, any of the N-2 eigenvectors with minimum eigenvalue will be 

adequate. (the reader may extent this idea to use all the noise eigenvalues to derive 
Music). 
 
III.10.12.- 
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For the 2D case, there are four possible equations that allow the use of the overall data 
when formulating the exact prediction. These samples are the four corners of the 
original 2D data. Note that we search for 4 frequencies, two pairs (w,Φ). 
 

 
 
III.10.13.- 
 

 
 
a) 2ˆ ˆ( ) . ( )x eS w H S w=  

b) 2 2
0

ˆ ˆ( ) . ( ) .x e

Unbiased for
E S w H E S w H N

white noise
   = = =     

c) ( ) ( )( ) ( ) ( ) ( )2 42 2 2 2 2
0

ˆ ˆ ˆ ˆ ˆ ˆvar ( ) .x x x x x xS w E S E S E S E S E S H N = − = − = −  
 and  

( ) ( )42 2ˆ ˆ.x eE S H E S=    altogether 

( ) ( ) ( ) ( )2 2
22 2

0 2 2
0 0

ˆ ˆ
ˆvar ( ) . 1 ( ). 1

e e
x x

E S E S
S w H N S w

N N

   
   = − = −
   
   

 

because ( )2 2 2 2 2
0

ˆ ˆ ˆ ˆvar ( ) var ( )e e e eE S S E S S N  = + = +   the desired result follows 

 

( ) ( ) ( )
( )

2 2 2
2 2 2

2 2 2
0

ˆvar .ˆ ˆvar ( ) ( ). ( ). 1
.

e
x x x

S Sin Q w
S w S w S w

N Q Sin w
 

= = + 
 

 

 
III.10.14.- 
 

a) See chapter content. 

Simples to be predicted from the 
rest of the data. 

Four equations to define the four 
unknowns. From all the possible 

solution, again we select the 
minimum norm one. 

{ }e H(w) { }x
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b) ( )
2 2. . . . . . . . . .H H H H

dx d do o
Q P w S R S S S S R S Q S R Sα α= = + = +  and 

. .
.

H
o

x d

S R S
P Q

Q
α= +  

c) ( ) ( ) 2 21 1/ 2 1/ 2. . . . . . . . .H H H HS R S S R S u v S S being u R S v R S− −≥ = = =  

d) Equal when u v∝  or 1/ 2 1/ 2. . . . .R S R S or R S Sβ β−= =  . This last relationship 
is true when either the acf matrix is the identity, within a constant or the 
frequency S is orthogonal to the actual frequency Sd 

e) We like to prove that 
1

2 1

. . 1

. . . .

H

H H

S R S
S R S S R S

−

− −≤  because ( ) ( )NMLM MLMS w S w≤  

implies greater resolution of the first with respect the second, whenever at the 
actual frequency they got the same value. 
 
To prove this, note that 

( )2 2 21 2 12. . . . . . .H HS R S u v Q S R S where u S and v R S− − −≤ = = = . 

  
Thus  ( ) ( )2.NMLM MLMS w Q S w≤  being equal when both vectors are proportional. 
This occurs at the actual frequency location since the actual steering vector is an 
eigenvector of the acf matrix. 

    -------- 

f) 
( ) ( ) ( )1

0 0

1
0

1
0

, , . . . .

. .
0

. .

H
n n

H
n

ML HH

R S X S R X S

S R X
S R S

α α α

α
α

−

−

−

Λ = − −

∂Λ = = = ∂ 

 

---- 

g) 

( )

2
1

0
1 1

2 0
21

1var
. .

. . . .
var

. .

ML H

H

Capon H

S R S

S R R R S

S R S

−

− −

−

=

=
 since 

( ) ( ) ( )21 1 1 1
0 0

1/ 2 1/ 2
0 0

. . . . . . . . .

. . .

H H HS R S S R R R S S R S

where u R S and v R R S

− − − −≥

= =
 

 

then 
( ) ( )

1 1 1
2 0

2 21 1
0

. . . . . .
var

. . . .

H H

Capon H H

S R R R S S R S

S R S S R S

− − −

− −
= ≥   and 2 2var varCapon ML≥  

 

 ( )

1/ 2 1/ 2 1 1
0 0

. ; . . . . ; . .

. . . .

var

H
d d

d

u v R S R R S R R S S

only when the noise is white

S S I S S

and when the steering S coincides with the actual frequency S
both iances coincide

β β β

α β

− −= = =

+ =  
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III.10.15.- 
 

a) 
 

  
 
b) 

 
 
Being so small the line a 1/6 is severely masked out due to the window leakage 
promoted by the strong line at 1. 
 
 Assuming that we are looking for the spectral content at frequency w0, the best choice 
for the data window is to have cero response an f1=1, i.e. the window will have a cero at 
w0-w1. Also a cero is necessary to remove leakage from line at -1, i.e. at w0-w-1.  
 

 
 

 -1                  -1/6      0       1/6                       1     year-1

 -1                  -1/6      0       1/6                       1     year-1

   w-1                                                                     w                        w1                     w 

Desired 
window 

A(w) 
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d) Assuming that only one line has to be removed, the constraint is A(w1)=0. The use of 
a single frequency of nulling in the design is for the shake of presentation and, without 
loss of generality, the design included hereafter can be extended to several nulling 
frequencies. Going back to the window design, we have two constraints: The value at 
w=0 has to be one (no bias) and cero to null w1, in consequence: 

 
[ ] [ ]1 1 0 . 1H H Ha S or a∆ = Ψ =     

 
where a is the vector containing the window taps 
 
The design is completed with minimum bandwidth (white noise equivalent bandwidth, 
i.e. the norm of vector a minimum, which is equivalent to minimum d.c. response of the 
lag-window corresponding to the data window under design. 
 

.H

MIN
a a  

and the solution is:   ( ) 1
. . .1Ha

−
= Ψ Ψ Ψ  

 
The norm of the window is: 
 

[ ] ( ) ( )1 *
2 2 2 2

1 11. 1 0 . . . . .
0 0

1
. .. 1

1

H H

H

Qa a Q
Q Q

also a

α
α α

−    
= Ψ Ψ = − =   − −   

 
  = 
  

 

e) The length of the segment, given the desired resolution, is 32 months, then 
 
10 . 10 10 320dB averages records months⇒ ⇒ ⇒  

e) It is easy to check that, for this length of the data record and maintaining the 
segment resolution, it does not change very much the results obtained for a 
rectangular or triangular window. 

 
III.10.16.- and  III.10.17.- 
 
The solution is easily derived from the content of this chapter. 
 
III.10.18.- 
 

( )
( )

0
0 2 2

0 0var (min .)
E x x

x
x σ

=
 =

                      1 0.x xρ=  

( ) ( ) ( ) ( )2 2 2 2 2 2 2
1 1 1 02. . . 2. .E x x E x x x E x E x x xξ ρ ρ = − = + − = + −   

( ) ( ) ( )
2

2 2 2 2 2
0 0 02

0

2. . 2. ; ;xE x x E x x
E x

ξ ρ ρ σ
ρ

∂
= − = = −

∂
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in consequence:     
2

2 2
0

x
x

ρ
σ

=
+

 

 

In the case of Periodogram, 2 2
0 xσ =  and 1

2
ρ =  

 
This exercise shows how the MSE is a trade-off between bias and variance. In any case, 
the relevance of a scale factor is removed when a logarithmic scale is used to plot the 
estimates. 
 
III.10.19.- 
 
a) 1prh all ones vector=  
b) The filter, at the frequency domain, is not invariant and it depends on the data. 

c) 

( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

0
0

0

( ) ( ).exp . * . .exp . .

.exp . . . .exp . .

exp . . . .exp . . .
T

y t x t j t h t h x t j t d

with
h j w x t j t d

w
t

j t h x t j w d

φ τ τ φ τ τ

τ τ τ φ τ φ

φ τ τ τ τ

= = − − =

≅ − − = =∂
=

∂

= − −

∫

∫

∫

 

 
This last integral is just the DFT of signal x(.) windowed by h(.), along the duration of 

the impulse response T). In summary  ( ) ( ) ( )0

22

w w t
y t DFT x

=
=  

 
 
d) The filter length (close to 1/T Hz.) 
e) The instantaneous frequency decreases with time 
 

t
φ∂

∂
maxw

m inw
t

( ) 2
y t

t
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f) It is similar to the Periodogram or modulus square DFT. 
 
 
III.10.21 
 
MEM set correlation constrains in such a way that the estimate the same autocorrelation 
values that the data record. 
 
The 2Q+1 correlation constrains are: 
 

( ) ( ) QQqqrdwjqwwsx ,;.exp).(.
2
1

−==∫−
π

ππ  

 
 
The objective is the maximum flatness of the estimate that, at the same time, satisfies 
the correlation constrains. Maximum flatness is equivalent to maximum entropy. Thus, 
the objective is:  

 
 
 
 

2A.- When there is only one correlation constrain the formulation of the estimate is: 

( )
MAX

x dwwsLn 


∫−

π

ππ
.)(.

2
1  

( )∫−
=

π

ππ
0).(.

2
1 rdwwsx  

 
The Lagrangian would be (Only a single multiplier). 
 

[ ]∫−
−=Ψ

π

π
λ dwwswsLnws xxx .)(.)(())(( 0     deriving with respect the estimate is 

equivalent to set to zero the derivative of the integrand. Setting to zero the derivative the 
estimate results.  
 

0
)(

1
0 =− λ

wsx

 i.e. the solution is: wwsx ∀= ;1)(
0λ

. In consequence the maximum 

entropy estimate with power constrain (Just the zero lag of the autocorrelation) is white 
noise with the same power. 
  

( )
MAX

x dwwsLn 
∫−

π

ππ
.)(.

2
1
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3A.- Solving the general problem, the integrand of the Lagrangian is:  

( ) ( )∑
−=

−
Q

Qq
xqx jqwwswsLn exp).(.( λ  and its derivative set to zero results in: 

∑
−=

=−
Q

Qq
q

x

jqw
ws

0)exp(.
)(

1 λ  or 
∑

−=

= Q

Qq
q

x

jqw
ws

)exp(.

1)(
λ

. 

The denominator polynomial is even and, as a consequence, it can be decomposed in 
two polynomials containing the inside and outside roots of the unit circle respectively.  

))(exp()).(exp(
1

)exp(.

1)(
jwBjwBjqw

ws Q

Qq
q

x −
==

∑
−=

λ
 and, normalizing the first 

coefficient to one  















+== ∑∑

==

Q

p

Q

p

jpw
b

pbbjpwpbjwB
10

)exp(.
)0(
)(1).0()exp().())(exp(  or 

))(exp(.1))(exp( jwAjwB 





=

σ
   In summary, the maximum entropy with correlation 

constrains can be written as: 
 

2

2

))(exp(
)(

jwA
wsx

σ
=  which coincides with the AR model estimate of the same order. 

4A.- 
The Yules-Walker equations, allowing the computation of the coefficients of an AR 
model of order Q are as follows:  
 

1.
..
0
1

.. 22 σσ =















=AR   being [ ]0..011 =T  , R  is the autocorrelation matrix, A  the 

vector containing the denominator coefficients with the first coefficient equal to one.  
[ ]TQaaA )(...)1(1=  

 
The design of a filter with minimum power at its output when the input is the signal {x} 
implies to minimize 

MINIMO

H ARA ..  with the constrain of the first coefficient equal to 

one that can be set, in a vector form, as 11. =HA . The solution to this problem is: 
 

1..1

1.
1

1

−

−

=
R

R
A H  or 1.

1..1
1. 1 










= −R

AR H  where it is evident that these equations are identical 

to the Yules-Walker equations. In summary, the solution coincides for both designs.  
Clearly, the noise power at the input of the AR model can be computed as: 

1..1
1

1
2

−=
RHσ  

5A.-  When the signal under analysis is pure AR then the white noise at the input of the 
model is Gaussian and verifies the AR equation as:  
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∑
=

=−+=
Q

q
n

H XAqnxqanxnw
1

.)().()()(   The likelihood will be: 

 

{ }ARActeA
nw H ..exp.)(Pr −=





   Clearly the maximization of the likelihood implies the 

minimization of the exponent yet preserving the first coefficient equal to one. Thus, the 
previous design coincides with the maximum likelihood procedure to estimate the AR 
coefficients.  
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IV.9.1.- 
 

2
.

. 1

nn MIN

H

X a d

a a

−

=
   solving this problem, the solution is: ( ) ( )1

. . . .H H
nn n n

a X X I X dλ
−

= +  

 
Note that the Lagrange multiplier, always greater than cero, acts as white noise is added 
to the original data. This procedure is also known as the diagonal loading method to 
make more robust to impairments the resulting Wiener filter. 
 
IV.9.2.- 
 

12
22 2

1 .. . . .
H

H
n n d

d dX d w R d d I R I P P d
d

σ
σ σ

−
 

= + = + =  −  =
 + 

  

 

then    
2

1
2 22 2 2

. . . 1 .d ddP PR P d d
d dσ σ σ

−
 

=  −  =
 + + 

 which reveals that the solution 

coincides, within a constant that does not modify the output SNR, with the vector 
containing the deterministic signal component. 
 
IV.9.3.- 
 

*

*

( ). ( )
( )

( ). ( )
Y l X l

H l
X l X l

= ∑
∑

      this expression reveals that the computation in the frequency 

domain of the Wiener filter from the DFTs of segments, corresponding to the input and 
output signals, faces a problem of spectral estimation. In fact, see chapter II when 
describing the spectral coherence, the actual expression of the optimum filter is given by 
the quotient of the cross-spectral density between the output and the input divided by 

the spectral density of the input.  
( )

( )
( )

xy

xx

S w
H w

S w
= . Windows, number of segments, 

resolution, etc. are the problems that this way of getting the Wiener filter have to 
overpass. On the other hand, the processing and design is done only with FFTs. It is 
more convenient than traditional time-domain design when the length of the filter is 
long (above 64 samples). 
 
IV.9.4.- 
 
ˆ( 2) (1). ( 1) (2). ( 2)x n a x n a x n+ = − − − −     

 since the prediction error has to be orthogonal to the data, 
 

(3) (0) (1) (1)
0 (0) (1). (3) (2). (4)

(4) (1) (0) (2)
r r r a

and the prediction error r a r a r
r r r a

ξ
     

+ = = + +    
     
 
or in compact form (Y-W equations for this case) 
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(0) (3) (4) 1
(3) (0) (1) (1) 0
(4) (1) (0) (2) 0

r r r
r r r a
r r r a

ξ    
    =    
    
    

 

 
IV.9.5.- 
 
The proper choice is to select those lags when the estimate acf shows the greatest 
absolute values. The reason is that the prediction is favored with the fact that the 
samples use to make the prediction have high correlation (positive or negative) with the 
sample to be predicted. 
 
IV.9.6.- 
 

1 0.5
0.5 1 0.5

0.5 1

a
R

a

 
  = 
  

              Using Levinson for this matrix: 

 

( )

1 2 2
1 1 1

1 2 2 2
1 1 2 2 2 2

0.5 1.(1 0.5 ) 0.75
...........................

0.250.5. 0.25 0.75. 1
0.75

k a

aa a a k a k

σ

σ

= = − = − =

−
∆ = + = − = − = = −

 

 
Clearly the MEM extrapolation for r(2) is that the corresponding Parcor is cero, i.e. the 
value of a that coincides with the MEM extrapolation of r(0) and r(1) is 0.25. 
 

The range of values for a (see IV.35) is 2
1

1
(2)

0.5MEMr σ


± = −
 

 
IV.9.7.- 
 

2
1 1 1

2
2 2 1

0.5 (1) . (0) 0.5. (0) (1 0.25). (0)

0.2 0.2. 0.15. (0) (2) 0.5. (1) 0.15. (0) (2) 0

k r k r r r

k r r r r r

σ

σ

= ⇒ = − = − ⇒ = −

= ⇒ ∆ = − = ⇒ + = ⇒ =
 

 
IV.9.8.- 
 

( ) ( )2 2 2 2

2. . .
1

.
Q

F B F B
k

F B F B
= ≤ ≤

+
∑ ∑

∑ ∑ ∑ ∑
 

 
We used that the arithmetic mean is less than or equal than the geometric mean and, 
later on ( )22 2. .u v u v≥∑ ∑ ∑  
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IV.9.9.- 
 

( )

( ) ( )11

( )
( 1)

( ) .
...
( )

( 1) ( )
( 2) ( 1)

( ) . ( ) 0 .
... ...
( ) ( )

HQQ
bb

HHQ QQ Q
b bb b

x n Q
x n Q

e n a and

x n

x n Q x n Q
x n Q x n Q

e n a e n a

x n x n

−−

− 
 − + =
 
 
 

− + −   
   − + − +    = = =     
   
   

 

then 

( ) [ ]1
1

( )
0( 1)

( ). ( ) . . ( ) ( 1) ... ( )
...
( )

HQQ Q
bb b Q

b

x n Q
x n Q

E e n e n a E x n Q x n Q x n
a

x n

−
−

 −  
  − +      = − − +          
   

 

or ( )1
1

0
( ). ( ) . .

HQQ Q
bb b Q

b

E e n e n a R
a

−
−

 
  =   

 
 . 

 Now using the expression of the Y-W equations for the length Q predictor 
2
,

0
.

..
0

b Q

Q
bR a

σ 
 
 =
 
 
 

 we have 11 2
, 1

0
( ). ( ) 0 .. 0 . . . 0Q Q

b b b Q Q
b

E e n e n R R
a

σ −−
−

 
   = =    

 
 

 
IV.9.10.- 
 

( )

.

1

1 1

2
1 1 1 1 12 2

0 0 0 0 0

2
1 1 1

0 0

212
1 1 0

120
0

. .

.1 1
1 . .1 1 . .1

. . . . . . . . .
1

.1 . . . . .1
1

1 . .
1 . 1 1 . 1 1 .

1 . . . 1 .

djw n
n d n

MINH H

H H H
d d d d d d

H
d d

H
dH H

H H
d d

X e S w

R
h

R R

R S S R R R R S S R with S R S

R I R S S R

R S
R R

S R S

α

ξ

αα ρ α
ρ

α
ρ

α
α

−

− −

− − − − −

− − −

−

− −
−

= +

= =

= + = − =
+

 
= − + 

= −
+ ( )1

0
1R−

 
 
  
 

 

 
Now, using the definition of the spectral estimates of MLM and MEM for the noise 
covariance matrix, 
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( )
( )

( )

1

211
20

0

0

11 . 1 1 .
1

H
MIN MEM

d
MLM

d

R
S w

S w

αξ
α

−

−−

 
 
 = −
 

+ 
 

   or 

 

( ) ( )

( ) ( )

2

1 01
0

2

0 0

11
1 . 1 .

1 11 .

MLM
dH

MIN

MLM MEM
d d

S w
R

S w S w

α
ξ

α

−−

  
+  

  =    + −    

 

 
Note that depending on the spectral density of the noise at the frequency of interest the 
noise reduction will change. When the MEM estimate of the noise is very high then 

( ) 11
0

1 . 1H
MIN Rξ

−−= . Meanwhile the density is very low, i.e. a band pass filter may take 

out the line, then 0MINξ ⇒ . 
 
IV.9.11.- 
 
Since  . .x U b and y V a= =   where matrixes U and V contain the samples of the 
input and the output respectively and properly arranged. 
 
Now  
 

( ) ( ). .

. . . . . . . .

. . . . . . . .

HH

H H H H H H H H

H H H H
uu vv uv vu

e x y

E e e E x y x y

E bU U b E aV V a E bU V a E aV U b

b R b a R a b R a a R b

= −

   = − − =    
       = + − − =       

= + − −

 

The minimization of the error entails the following gradients equal to cero: 
. . . . . . . .

............

0 . . . .

0 . . . .

H H H H
uu vv uv vu

H uu uv uu uv

H vv vu vv vu

b R b a R a b R a a R b

R b R a R b R a
b

R a R b R a R b
a

ξ

ξ

ξ

= + − −

∂
= = − ⇒ =

∂
∂

= = − ⇒ =
∂

 

 
These two equations correspond with the Wiener solutions of one given the another one.  
 
Combining both:  1. . . .

vv vu uu uv
R a R R R a−=  

 
Solving this equation may be is not possible since it implies the existence of an 
eigenvalue equal to one. When solved for all the eigenvalues, 
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( )1

1

. . . .

. .

vv vu uu uv

uu uv

a R R R R a

and

b R R a

λ −

−

= −

=

 then the error is not longer cero but equals to: 

 

( )1. . . .H
MIN vv vu uu vu

a R R R R aξ λ−= − =  

 
which implies that the optimum is the eigenvector associated to the maximum 
eigenvalue. Note that this technique does not guarantee that the denominator will be a 
minimum phase polynomial. 
 
IV.9.12, IV.9.13 and IV.9.14  
 
They can be solved directly from the chapter content and previous exercises 
 
IV.9.16. 

( ) ( )[ ]{ })(..)(.exp.)(Pr 1
0

nihXRnihXcteni
X

n
H

n
n −−−=





 −  

( ))(...0
)(

(.) 1
0* nihXRh

ndi
d

n
H −== −         

hRh

XRh
ni H

n
H

ML

..

..
)( 1

0

1
0

−

−

=  

2B 
2)(. nihX n −=ξ  which is the same than the exponent of the likelihood when 

0
R  is a 

constant by the identity matrix. In other words: 
hh

Xhni H
n

H
MSE

.
.)( =  

2C 

[ ] [ ])(..)(. niXhniXh n
H
e

H
n

H
e −−=Ψ         [ ])(. * nihXX

hd
d

e
H
nnH

e

−=
Ψ  and minimizing the 

expected value of Ψ we arrive to: ( ) ( ))(... * niXEhXXE ne
H
nn =  which is the 

corresponding Wiener filter for the given problem.  hRhe .1−=  
2D 
The Wiener filter is hRhe .1−= , also 

0
. RhhR H +=  and, using the Inverse Lemma we 

obtain:  

( ) 







+

−=














+
−=+= −

−

−−
−−

ρ
ρ

1
1..

..1

....
... 1

01
0

1
0

1
01

0

1

0
hR

hRh

hRhhR
hRhRhhh H

H
H

e  thus, both differ in 

a constant. 
 
IV.9.17. 
 

a.- The output signal of the system is 
)2(.)1()1(

)1(.)()(
−+−=−

−+=
ndandnx

ndandnx
 thus, the vector 

formulation for the two samples will be:  



Miguel Angel Lagunas 13/08/2007 48 
---------------------------------------------------------------------------------------------------------- 

















−
−








=








−

)2(
)1(

)(
.

10
01

)1(
)(

nd
nd

nd

a
a

nx
nx

  and nn dHX .=  e nnnnn wdHwXY +=+= .  

 
since d(n) is uncorrelated with unity power ( ( )

3
. IddE H

nn = ) , and the noise is 

uncorrelated and independent of y(n), we have 







+

10
01

.. 2σHHH  

b.- Given a reference at the output of the first linear system, since the reference at the 
output of the first linear system has a delay of one simple (it passes by a FIR filter of 
two coefficients) it has no sense to ask that the system recovers by anticipation. Also it 
can be seen that the 3 samples of d(n) that participate on vector nX , the simple that 
appears more times than the rest is d(n-1), in consequence it is intuitive that this lag will 
be the most easy to handle.  
c.- 










++
++

=







+

























=








+ 22

22
22

1
1

10
01

.
0

1
01

.
10

01
10
01

..
σ

σ
σσ

aa
aa

a
a

a
a

HH H  

 

then =−1R
( ) 









++−
−++

−++
22

22

2222 1
1

1
1

σ
σ

σ aa
aa

aa
 Also, the P-vector of the 

Wiener filter will be: 

( ) 







=
















=−=

1
0
1
0

.)1(.
a

HndYEP n   Then, multiplying by the autocorrelation inverse the 

Wiener filter results.  
The minimum error power is given by PRPP H

d .. 1
min

−−=ξ  and, being the reference’s 
power equal to one and using the expression of the Wiener filter,  
 

=−= AP H .1minξ ( )
( )[ ]2222

2222

1
1.1

aa
aa

−++

+++
−

σ

σσ  

 
d.- The denominator of the step size is the trace of the data autocorrelation matrix and 
the numerator the miss-adjusment, in consequence:  

( )221.2
1.0

σ
µ

++
=

a
  At the same time since the number of iterations for convergence is  

( )min.1
)10(
λµ−

−=
Ln

Lnnc  small values of the miss-adjusment implies that the number of 

iteration for convergence is bounded by: 
( )

( )
2 2

max
2

min min

2.(1 )(10). (10). (10).
1

Trace R anc Ln Ln Lnλ σ
λ λ σ

+ +
≅ < =

+
 Note that the number is 

the closest integer to the above expression.  
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e.-  Since z(n)=y(n)+b.d(n-1)=d(n)+a.d(n-1)+w(n)+b.d(n-1), or z(n)=(d(n)+w(n))+ 
(a+b).d(n-1)  then the error would be:  
 
e(n)=z(n)-d(n)=w(n)+(a+b).d(n-1) 
 
Clearly, being w(n) y d(n) uncorrelated, the solution in order to minimize the power of 
the error is obtained when the second coefficient will be zero, i.e. b=-a. 
 
In can be seen that this second solution is a system that perfectly inverts with an IIR the 
FIR channel. This solution requires that the value of a has to be strictly less than one 
otherwise the system will be non stable, precluding that the detector may obtain the 
desired signal at its output. In fact, the major problem of the filter stays on that requires 
that the detector provides a perfectly regenerated reference. This implies that any time 
z(n) has to be as close as possible to d(n), i.e. the signal to noise ratio has to be high (or 
moderate high). Under these two circumstances, a lower than one and good SNR the 
second system performs better than the first. Nevertheless, in general the IIR solution is 
usually disregarded in practical systems.  
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V.8.1.- 
 

( )

( )

0.1
.

.. 1 . 0.99 100

x

H
n n

x x

M
M PTrace R

X XP P with equivalent to more than samples
M

µ

β β β

= =

= + − ≥

 

c) 
( )

( )
2

min

2.3 2.3
1 . 0.1.1

cn
Ln

Ln
Trace R

µ λ σ
= =

−  
 −
 
 

 

d) 

Since ( ).M trace R= Σ  and 
2
max

3.2b

Adiagonal
 

Σ =  
 

 then 
( )2

max
.

.
3.2quant b

A Trace R
M =  

 
V.8.2.- 
 

a) The eigenvalue spread is given by the ex-centric  are the plots. Approximately 
the length of the major with respect the minor axis in the plot is 0.8. 

 
b) The spreading around the optimum seems to be 5 times larger in the second case 

than in the first. This is the same for the convergence rate. In consequence µ  in 
the second case looks 5 times greater than  in the first case. 

 
c) The same reasoning that it was done in (b). 

 
V.8.3.- 
 
a) 
 

1 0
.

0

Q
Q

Q Q
r

aa k
a

+   
= +   

   
 where “r” indicates reverse order: Start with [ ]0 1a =  

b)  
 

( )( )1 1( ) ( ) . . ( 1). ( ) 1 . ( ). ( )Q Q Q Q
q q b f f bk n k n e n e n e n e nµ γ γ− −= − − + −  being the objective 

 ( ) ( ) ( )2 2
. ( ) 1 . ( )Q Q Q

f bE e n E e nξ γ γ   = + −      
 

c) The data used in this gradient lattice is 
1

1

( )
( )

Q
b
Q
f

e n
data

e n

−

−

 
=  

  
 and its trace is 

1 1Q QF B− −+ . Then the steep size will be: 1 1

0.1
Q QF B

µ − −=
+
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d) It is obvious that the steep size will grow since the denominator at each section are 
the prediction errors for successive orders that, in general will strictly decrease. Only 
they remain the same when the adequate order of an AR process is over-passed. 
 

d) Already done in the previous sections. The trade-off parameter was γ . 
V.8.4.- 
 
a) Check the chapter content to prove this formula 
 

( ) ( ). .
H

n opt n optMIM A A R A Aξ ξ= + − −  

b) Defining ( )n n optA A A= −%  and ( )( )H
n opt n optE A A A A Σ = − −

 
 because the 

commutative property of the trace 

 

[ ] ( ) ( )

( ) ( )( )
( )( )

( )

. .

. .

.

. . .

H
n opt n optMIM

H
n opt n optMIM

H
n opt n optMIM

H
MIM MIM

E E A A R A A

Trace E A A R A A

Trace R E A A A A

Trace R E A A Trace R

ξ ξ

ξ

ξ

ξ ξ

 = + − − =
 

 = + − − =
 

  = + − − =   
   = + = + Σ   

% %

 

c) 
))()(.(.1 nyndXAA nnn −+=+ µ  

Subtracting the optimum in both terms 

1 . .( ( ) ( ))n n nA A X d n y nµ+ = + −% %  
Computing the covariance 

2 2
1 . ( ) . 2. . . ( ).

HH
n n n nn n E n E X X E X n Aµ ε µ ε+

   Σ = Σ + −     
%  where we have assumed that the 

error is orthogonal to the data since we are close to convergence (note that we are dealing with miss 
adjustment) 

Because, being close of convergence, ( ) . ( )H
n nn X A w nε ≈ +%  then . ( ). .

H
n n n

E X n A Rε  ≈ Σ 
%  and 

2
min( )E nε ξ  ≈  . 

 
In summary:   2

1 min. . 2. . .n n n
R Rµ ξ µ+Σ = Σ + − Σ  and forcing that 

1 convergencen n
n n

+
Σ = Σ = Σ ∀ ≥  

 
2 2

min min. . 2. . . . . 2. . .R R R Rµ ξ µ µ ξ µΣ = Σ + − Σ ⇒ = Σ  
 

and  min. .
2

Iµ ξΣ =  

d) 

From the definition of the missadjusment 
[ ] ( ) ( )min

min

. .
2

nE
M Trace R Trace R

ξ ξ µ
ξ

−
= = Σ =  

 
e) 
 Done in the previous exercise 
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f) 

Since  

[ ]

[ ]

min

min

1

d d
opt

n

opt opt

n

P PSNR and SNR
E

then
SNR SNR

SNR
ME

ξ ξ

ξ
ξ

= =

= =
+ 

 
 

 

 
V.8.5.- 
 
a.-  

{ } { }

( )

1

. ( 1) .

.

( ) ( 1) ...
( ) .... ( 1) . ;

( 1) ( 2) ...
1 1 2 2

( ) (1) (2) 0 .. 0 0
.. 0 (1) (2) .. 0 0

( 1) .. .. .. .. (1) (2)

H

n n n

H
n n

P E y x n and R E y y

h R P

x n x n
y n y n M C X X

x n x n
xM x xM

or

y n c c
c c

y n m c c

−

= − =

=

− − − − − − − − − − − − − − − − − − − − − − − − − − −

− 
− + = =  − − 

  
  =  
 − +  

( )
( 1)

.
..

( )
. nn

x n
x n

x n M
y C X

 
  −  
  

    − 
=

 

Thus, the filter design equations are: 
 

( )

0
(2)

1
(1)

. . ( 1) . 0
0

..
..

0

n

c
c

P C E X x n C

 
  
  
  = − = =
  
  
   

  Vector of M components. 

0 0. . . . .H H
xx

R C R C N I C C N I= + = +  

b.-  For M=2 we have: 
 

2 2

0 02 2

1 0
2

00

1 0.5(1) (2) (1). (2)
. .

0.5 1(1). (2) (1) (2)

1 0.51 .
0.5 1(1 ) 0.25

c c c c
R N I N I

c c c c

N
R

NN
−

 +  
= + = +   +   

+ − 
=  − ++ −  

 

0
2

00

0.51/ 2 .
0.5(1 ) 0.25

N
h

NN
+ 

=  ++ −  
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c.- 
2

1 0
2 2

0 0 0 0

1 2. 0.5 2. 2.. . . 1
1.5 4. 2. 1.5 4. 2.

H H o o
x x

N N NP P R P P P h
N N N N

ξ − + + +
= − = − = − =

+ + + +
 

d.- 1 . ( ).n n n
h h n yµ ε−= +  

e.- 
( ) ( )2 2

max 00

1 2 2 1
12. 2. (1) (2) NTr R N c c

µ
λ

≤ ≤ = =
++ +

 

f.- 0
0 0 0

min 0 0

11 1. . . 1
.con

Nn k k k
N Nµ λ

 +
= ≈ = + 

 
 

g.- 

 ( )
2.%

0.1 0.1

M when
Tr R

if M then

αα µ

α

= =

= =

 

for 0.01 criteria of convergence 
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VI.8.1.-  
 

a.- Since . 4.HA A I=  then   
1 3

0.5.
3 1

B
 

=  
  

 

b.- 
1

1x
C

ρ
ρ

 
=  

 
 the eigenvalues and eigenvectors are  

11

22

111 .
12

111 .
12

e

e

λ ρ

λ ρ

 
= + =  

 
 

= − =  − 

 

thus   
1 11 .
1 12

 
Φ =  − 

 

c.- 

 
( )

ˆ. . . .

ˆ . . . . . . . .

Q H Q H

H H H H H H

z B x z z B x x B z x B

x x B B B Tr B B

ε ε ε

ς ε ς ς ε ε ε ε

= = + = + = = +

= − = = =
   

taking the expected value of the last expression we obtain the error power E 

{ }( ) ( ) ( ) ( ). . . . . . .H H H HMSE Tr B E B Tr B E B Tr E B B Tr Eε ε= = = =  

Now, 
2. 1

2. 2

1/ 2 0
( ).

0 1/ 2

k

kz
E diag R

 
=  

 
 since the quantization error is the power of the signal to be 

quantized, reflected in the diagonal of the acf matrix, divided by two raised to two times the number of 
bits used. 
 

. .H
z x

being R B R B=  

 
Case of the proposed transform: 

2. 1

2. 2

4 2. 3. .21 3 1 1 3 40.25. . .
13 1 3 1 4 2. 3. .2

4

k

k

xx

xx

ρ
ρ

ρ ρ

−

−

 +
       =      −         
 

 

and the error is: 2. 1 2. 24 2. 3. 4 2. 3.( ) .2 .2
4 4

k kMSE PT ρ ρ− −+ −
= +  

Case of the KL: 
 

( ) ( )2. 1 2. 2

1 0
. .

0 1

( ) 1 .2 1 .2

H

k k

R

MSE KL

ρ
ρ

ρ ρ− −

+ 
Φ Φ =  − 

= + + −

 

 When k2=0 
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( ) 2.

2. 2

2.

1 .2

4 2. 3. 3.2 1 . .2
4 2

.
2.2

KL k

proposed k k

direct k

MSE

MSE

d
MSE

ρ

ρ ρ

−

− −

−

= +

   +
= = +      

   
−

=

 

 
 
e.- When k2=0 then: 
 

 

2

2

12. 1 log

4 2. 3.2. 1 log
4.

KL

proposed

k
D

k
D

ρ

ρ

+ =  
 

 +
=   

 

 

2

.
22. logdirect

e

k
D

−

 =  
 

 

f.- Obvious. 
 
VI8.3.-  

a)The given expression , ,
1

( ). .
Q

H
r n r nnn

r
X r u vϕ

=

= ∑ , can be written as . . H
n n nn

X U diag Vϕ=  

which indicates that matrixes 
n

U  y 
n

V  diagonalize directly the given matrix. For this 
reason for every sub-image it is necessary to transmit both matrices, which implies a 
severe waste of channel capacity.  
 

b) In this case 
1 1

( , ). .
Q Q

H
r snn

r s
X r s u uφ

= =

= ∑∑  or . . H
n n

X U Uφ=  which does not diagonalize 

the original matrix, it is just a mere transformation. At the same time, this transform 
does not depend on every sub-image under processing and can be computed as an 
average over an ensemble of sub-images.  
 
In any case, it is important to set additional criteria in order to select a transform in such 
a way that the transmission of 

n
φ  reports more advantages than the direct transmission 

of the original image. Otherwise the transform would be un-useful.  
c) Since the determinant of a definite positive matrix 

x
R , which trace is fixed since the 

elements of the main diagonal are the energy of every component, is always lower than 
the product of its main diagonal components, then B is maximum when the off-diagonal 
of the transformed matrix are zero. In other words, the components are uncorrelated.  
d) Since the power is ( ) ( ). . .H H

n ny y x
P Trace R E Y Y Trace U R U = = = =   The trace has 

the circular property, i.e. altering the order does not change the trace= ( ). .H
x

Traza R U U . 
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In order that this last expression be equal to ( )xP Traza R=  is clear that the transform 

matrix must be orthonormal. .HU U I=  
 
e) The orthonormality constrain together with the un-correlation of the components 
implies that the transform matrix has to be set equal to the eigenvectors of the original 
correlation matrix. 
 

[ ]. .RU U diag λ=  and [ ]y
R diag λ=  

 
Clearly B is preserved (it does not increases) since the determinant of the resulting or 
transformed correlation matrix is just the product of the eigenvalues which is the same 
that the determinant of the original matrix.  
 
f) The DFT is also an orthonormal transform. The difference is that the autocorrelation 
matrix of the transformed data is not diagonal. In other words, assuming that the 
transform is the set of outputs of a filter bank, the DFT does not use orthonormal filters 
they have aliasing precluding the un-correlation of their outputs. Only when the size of 
the signal tends to infinity then the filters become ideal and their outputs uncorrelated. 
Nevertheless, for reasonable sample size the DFT may show good decorrelation among 
its components. 
 
Any non-linear processing tends to spread the energy in the frequency domain. Since 
the DCT implies an additional extrapolation making even the original signal this 
provides better result that the zero-padding associated with the DFT. The energy 
leakage due to non-linearities is always from frequency regions of similar energy levels. 
In addition, DCT implies only real operations.  
 
V.18.4. 
 

a.- UIT a rectangular sampling matrix 







=

10
01

.dU
R

, the repetition matrix in the 

frequency plane would be 







=

10
01

2. πUV T

R
 and 








=

10
01

.2
d

V
R

π . With this matrix 

the spectrum plane is: 
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To prevent aliasing it is necessary that Bd 2≤  
 
b.- Doing the same that in the previous section,  









=









−
=

10
01

.2
2/12/1
2/32/3. πdVUV T

HH
T
H

 and 








−
=

2/32/1
2/32/1.

3
2.2

d
V T

H

π  in 

consequence: 







−

=
2/32/3

2/12/1
.

3
2.2

d
V T

H

π . The spectrum plane will be:  

 

  

1/d 

1/d 

f1  

f2  

2B   

  

( )3./2 d  

1/d   
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Now the closest spectrum are located at a distance equal to 
3.

1
d

 and the constrain for 

no-aliasing is 3).2( Bd ≤  
 
c.- The hexagonal sampling is better since it requires a longer distance in sampling (i.e. 
the sampling frequency yet preserving the anti-alisaing condition is lower for hexagonal 
than for rectangular sampling)  
 
d.- The inverse Fourier transform for the discrete signal is: 

( ) ( ) wdwUnjwFctenf
R

T

w d )...exp(..∫=  

Sampling in the w  plane with m.2 Φπ  we obtain: 

( ) ( ) wdmUnjmFctenf T

R

T

m
dd )...2exp(..2. ΦΦ= ∑ ππ  

This is a periodic function in the spatial domain and it has to show repetition when 
passing from n  to lNn .+ . Clearly, to avoid aliasing, matrix N  must be diagonal 
(rectangular case) with entries above M where M.d>2D. Thus 









=

M
M

N
0

0
 

Finally, the existing relationship between the sampling matriz and the sampling matrix 
at the frequency domain is derived from setting factor Φ..

R

T UN  equal to the identity 
matrix. In consequence: 
 

TNV −=Φ .2π  
 
And, because ( )df n is the basic function repeated without aliasing, we can write the 
following expression:  
 

( ) ( ) wdmNnjmFctenf TT

m
d )...2exp(.. −∑= π  

e.- The reasons for using the DCT instead of the DFT in image processing are all of 
them based on the real and positive character of the signal at the spatial domain. The 
major differences among both transforms are:  
1.- Always use real numbers (no complex quantities).  
2.- Twice resolution of the DCT with respect the DFT of the same size of data signal.  
 
As a consequence of this second property, the repetition is performed over the even part 
of the original signal, this implies than any non-linear processing, like quantification 
included in all the standards for image coding, the leakage of energy motivated by the 
non-linear processing in the borders of the data segment does not occurs on different 
border (left or right in the figure. This property is essential in reducing distortion on 
coding and compression procedures.  
 
 
Periodicity on DFT. 
 
 



Miguel Angel Lagunas 13/08/2007 59 
---------------------------------------------------------------------------------------------------------- 

 
Periodicity on DCT for the same record length 

 
 

 
 

 

    

 
 
 

 
 
 

   


