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ML, MSE and the MDIR Receliver
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-Tx-Rx optimization can be done over the ML receiver.

- Complexity can be very high for ns (# of streams)
greater than 4.

- Existing alternatives 1s to consider MSE/ZF designs
for the receiver, less demanding in terms of memory and
computational load (but sub-optimum).

assume white

All,y)= —Trace[X _ﬂgl“) R, 1'(&‘ _Q’E'l”)]z noise scenario|

o« —Trace|(X , — H.B.I, )(X, - H.B.I, ' |=—Trac

—_—"—'—n

The likelihood 1s minus the trace of the MSE matrix




Assuming a square root decomposition of the
noise matrix we arrive to the MDIR detector.

assume

A(lo):—Tl’ace[(Ln -H.B.I, ) B_l (X -RHBlI, )]: R—l WW

—TraceUM X,-W"HB.I

MDIR to reduce the ML with the presence of
interferers to white noise (easier metric computation
than in the original. Matched DIR on the stream
processing. Forward equalizer concept.
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The MSE/ZF Recelver
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do Cotatumya The errori1s: ¢ = (éH H.B-I )ln T éH W,

and, the MSE matrix
£~ Ele,ef )= (A" HB-1)(A"HB-1]' + A" R A

B Note that bit-streams are assumed uncorrelated
which holds also when using block (repetition) or
convolutional codes
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enel )= (A" HB-1)A" HB-1) + A"

perfect square
- H H -1 i H H
A-(R,+1"8"8H) e[ (R, +H"8"BH

k R +HHBHBH)_1HB]+h—HHBH R +H"
_— 0 i — = = 0 =

E= E(gn.gr']4

)
EHBH)_IHB]

The matrix of the minimum error and the
recelver are:

Matrix inverse lemma

(A+BCD)'=A"-A"B[(DA'B+C" DA"




The MSE Receiver and MSE Matrix

de Catturya In case of ZF remove from the MSE the
Identity matrix

Before facing the Tx design, some preliminars.....



QUALITY equivalent to MSE or SNR or
BER ??

For single channel (SISO) it is easy to conect these 3
quality measures:

snr = L—1 BER < exp(—kK,.snr)
mse

For low SNR regime the BER 1s concave for high
SNR (BER<0.1) 1s convex

R For MSE receiver the error is
=1, +¢& independent of data or filter input
- o vector

UNLESS the MSE
L = 2 + E matrix 1s diagonal the
) 1 SNR per stream 1s not
SNR ©> EE = E _L properly defined
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Majorization Theory

Majorization makes precise the notion that the
components of a vector are “less spread” than the
components of other vector.

Let us assume two

CTTC? vectors with X x(1)=x(2)>...2 x(N)
Comdose components arranged in -y y(I)>y(2)>...2 y(N)

decreasing order

Vector x 1s majorized by y X<y

Zn:x(i)gzn:y(i) 1<n<N-1 and ZN:x(i)zzN:y(i)
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When the sum up N is also smaller

for x than for y we denote this as “‘y
weakly majorizes x”

<
A
<

Also, using logarithms we may extend the concept of
majorization to the product of the vector components
instead to their sum.

CTTC® Some examples:

Centre
Tecnoldgic

e Catatumya 1<x with 1= Z ()ones(l N)

1

For any x < y there exists a sequence of transforms T, T, . T™

with K <N suchthat x=T" ,T“" . T%y

For any Hermitian matrix the eigenvalues majorize
the diagonal entries A >d (det(é)s I1 a")
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Schur-Concave and Schur-Convex

A

{ W Areal valued function CI)(X) 1s said to be Schur-convex 1f

x<y = ox)<oly)

AN\ | It is said Schur-concave if
CTTC”
Comr X<y = ©O(x)> oly)

de Telecomunicacions I

Sc-cx and Sc-ce do not cover the complete set of real
valued function defined over x

Function ®(x)=Y x(i) is Sc-ce and Sc-cx

. I
8y ®d(x)= x(1)+2.x(2) + x(3) is neither Sc—cx not Sc—ce
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MSE Defined Designs
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SC-ce and SC-cx functions of MSE and
MIMO Tx Designs

The objective for the Tx design will be of the form

min f (diag \I\/I:SEJ)

Since, diagonal 1s majorized by the eigenvalues of the
matrix, for Schur-Concave functions the optimal
solution will be to diagonalize the MSE

As a consequence, the number of available channels
will be equal to the rank of the channel meaning that if
we try to send more symbols than the minimum number
of antennas (Tx-Rx) the excess symbols will be
systematically on error.
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For Schur-Concave functions of the MSE DO NOT
send more symbol streams than the minimum number
of antennas at Tx-Rx

In summary, the Tx matrix will contain only the power
allocation matrix and the spatial processor

B =U.diag(z")
/ \
, Power Allocation
The eigenvectors of

R, =H"R"H=U.diag(A)u"

||C :

diag(z)u "

The solution diagonalices the MSE | Q =




o min f (diag \I\/I:SEJ)

When {(.) 1s Schur-Convex since the uniform MSE
(the same value for all diagonal entries) 1s majorized
by any other choice, this implies that the solution has

to set all the diagonal elements of the MSE matrix

equal.

At the same time, when there are more symbols than
eigen-channels an unitary matrix (rotation) is needed to
spread the energy of all the streams on the available
channels.

In this case the optimum Tx-Rx does not diagonalices

2
08g the MSE matrix




16 Schur-Concave
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Arithmetic Mean of the MSE diagonals

The problem is: rrlBin[trace(M:SE)] N méin\}race((i +B’ R, 'E)_l )‘

st. trace|B.B" ): =

The trace 1s a Schur-Concave function of the diagonal
entries, In consequence:

A =d = sum(4)<sum(d)

The solution 1s that B diagonalizes R,

B=U.diag(z"”)

R, =U.diag(2)u”

The optimum Tx diagonalizes the channel
and also the MSE (for ns, #of streams, equal
to no, rank of the MIMO channel)
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no

New problem_ .
min Z >
Power allocation: 97! I+4(9).2(q)

iZ(q) <E, 2(q)>0,

Assume

w(q)=1
The Lagrangian 1s: q=1,n0

ZIJFMq) 2q) (qz; ()-E J+Zu 2(q)

o — KKT.- Energy with equality, Lagrange factor p greater
than cero, and v. cero

bugl=0 = — Dm0 =f @ =|ua@ -2 ]

(1+ 2(q)-z(q))
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- Not all modes are activated
- More power to high eigenmodes (fairness!)

- Waterfilling algorithm

- When all the modes are activated:
trace MSE/nO)z

L (S a@f

IO

D JCINN (|
N B+ 2 A7 [ B 4D A@ TE+ ) A"
T 1 !
n,+E-A(Q) | n, 1+[|:']T]/1(CI)'\UPA No CSIT
solution

Full CSIT Solution
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The Geometric mean of the MSE

The problem 1s: B

st trace(BB" )=,

mm[det(&] mm{det( E R, E )J

The determinat or geometric mean is a Schur-Concave
function (use log(.) at the objective) of the diagonal entries,
In consequence:

The solution 1s that B diagonalizes Ry

R, =U.diag(4)U"

B=U.diag(z"”)

CRE
@5
©

The optimum Tx diagonalizes the channel
and coincides with the capacity solution
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The MIN-MAX MSE

mBin [max(M:SE>] = méin \_max((i +B H R, .E)_l )J

The problem 1s: &
st. tracelB.B" ): =

The trace 1s a Schur-Convex function of the diagonal
entries, In consequence:

1 <d = all MSE entries equal

Assuming that the number of symbol streams 1s L
and the rank of the MIMO channel 1s L,<L. Implies
that the solution for the Tx will be 1n 1ts general
form:

B :Li.diag(;”z)\g'




22 The MSE matrix will be:
MSE=(1+B"R B =Vv(1+D D_J'v"*

=V.MSEOV "

Since Dy, =diag(A,A,,.., A ,0,..,0) 1t 1s non-sense to
allocate power to the null eigenvalues; thus L-L,
cahnnels will be with an MSE equal 1 (full error) and its
trace would be:

x' trace(MSEO )= (L - L, )+
AN - e
CTTC" , , ,
onooge Since the unitary matrix V does not modify the trace,
b it means that the trace of the MSE is the same that the

trace of MSEOQ. In consequence the mission of V is to
transform MSEQO in order that all the diagonal entries
of MSE are equal to:

L), (L) !
MSE” — (I_Tj+(Lj;1+ Z(Q)/I(q)
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Now we can formulate the following convex problem:

min t St

L) (1 1
! S( T)*(Lj;m(qmq)

> 2q)<E 2(@)20

The solution for the power loading 1s 1dentical to
the trace of the MSE. The Tx differs in this case in

the necessity of matrix V at Tx. The MSE matrix is
not longer diagonaliced
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There is a sub-optimal solution which 1s to force by
the power loading that all the entries of the MSEOQ
matrix are equal.

2(q) = E;.A(Q)
PWIC)E

And the MSEOQ entries are:
-1
oo, -(1-1 ) ZEO
L) E +> A

The second term 1is larger (see slide 26) than the
obtained from the optimal solution
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Arithmetic mean of the SNR

REMARK: Only properly defined 1f the MSE matrix 1s
diagonalized.

The problem is:mBin[trace MSE ™ —L) = Bin{trace((EH .EH .E)_l)_

st. tracelB.B" ): =

The trace 1s a Schur-Concave function of the diagonal
entries, In consequence:

A =d = sum(4)<sum(d)

B=U.diag(z"”)
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New problem

Power allocation: m?XZ A(9).2(q)
£ q=1

st. > z2(q)<E; z(q)=0,vq
1

The solution for this problem is just to provide all
the available energy to the best eigen-channel.

BEAMFORMING and pack all the streams in a
single stream
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The Determinant of the SNR (Geometric
mean)

The solution 1s UPA and no CSIT is
necessary.

The MAX-MIN of the SNR and BER

The solution, as in the Min-max of the MSE, is
the same since both functions are convex.
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Arithmetic mean of the BER

Since for small MSE the BER is convex (Pe<10-!) the
solution reduces also to the mean MSE plus a rotation
to get the same value at all the diagonal entries.

Geometric mean of the BER

Beamforming
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SIMULATIONS

BER

Outage BER (QPSK) in a MIMC4,4) channel
10

—— GEOM-MSE
—— GEOM-SINA
—=— ARITH-MSE

it e max-msE

cz| =— HARM-SIMR |-::

:-| — ARITH-BER

SNR (dE)
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BER

Qutage BER (16-QAM) in a MIMO(4,2) channel

—#- GEOM-MSE
—*— GEOM-SINR
-9~ ARITH-MSE
:| <0~ HARM-SINR
.| 8- MAX-MSE

SNR (dB)




Sl

Outage BER (QPSK) in a MIMO(4,4) channel for L=3

........... S . - T S
o | -3 MAX-MSE-subopt : : C :

= MAX-MSE-noncoop |::
—0- MAX-MSE-coop -

SNR (dB)
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BER

Qutage BER (QPSK) in a MIMO(4.4) channel for L=4

I
R EEEET]

-4 MAX-MSE-subopt
—& MAX-MSE-noncoop |-:::

—0— MAX-MSE-coop

SNR (dB)
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The TX Architecture (Single/Multiple

Symbols)

{ . M1, | E°0 0 Y
o T e A el \
L I, 0 0FE N

&i& Defines constellation Power Spatial

LA allocation Processor
%ﬂgjl(n)
AN X .
CTTC? For single symbol at Tx the ML detector focused on

oo the symbol not in the bit-streams was:

de Telecomunicacions
de Catalunya

Traza| (B" H" H.B) [s(n) |>2.Re| s(n)Traza(w " H B) |

N —/—— =

The ML detector for optimum bit decoding will be:

~  ~H
LI

— — —nN —

Traza{(ﬁ” H" .Q.E). 2} >2.Re [Traza(W "H.B.I, )J
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Assuming only an error in a single component of the
streams vector and with:

t(q) =(q,q) elementof B"R B

The probability of error per stream will be:

d’t
Pe(q)—Q[ : (Q)J

2.N,
cTrer |
onapogc Since d, 1s selected for unitary energy per symbol for

cach #q constellation, the design would be to minimice
some objective (minimax or average) contrained to the
maximum energy to be used by Tx.

Note that it 1s assumed that there 1s no room for bit
allocation which 1s assumed done (no sense?)
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Note that the objective of max average SNR will end
up 1n to diagonalice the channel. This implies that the
manner that streams will pass the channel will be
traveling along the eigenvalues of it.

Proper design: TX under maximum capacity and
RX with ML detection

Point To Point MIMO: MIMO PTP
-Served as single user

- Served as contrained rate streams
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The ML Recelver (Baseline)

Taking into account the Tx architecture,

| - The detector formulation in order to compute the pair-
AN wise error probability reduces to:
CTTC® 2
Eﬁ}:ﬁ%mum Traza{(L=J': .iH iL=JT ) E1/2.\4H |_~0-|_~0H .=£1/2 :| > 2,Re[Traza(VlnH i-g-l:o ):|
where H \H T
o=V I, y ¢=V .1,

Note that the spatial processing, the
power allocation and the constellation
are clearly separated in this formula
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’ﬁ Duality Theory and KKT Conditions
8.

Convex problems minx 1:0 (X)
st. f(x)<0 i=1m
hi (X) =0 I — 19 p

Feasible solutions and optimal value f i

The Lagrangian 1s:

L(Xﬁﬁ) +Zﬁ f +Z:,uI

&: H Dual X Primal variables
— variables —
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L(X ﬁ,,u)— f, +Zﬁ, fI +Z:,uI

The dual function (always concave
regardless the original could be not)

g\4 p)= inf L(x,4,u)

, X feasible
since

fo ()= £,00)+ 0 A i (%) + D 4.0 (x) =

> inf L{x, 2 4)= (4. 1)

min f, (X) > max g(&,g)

X s
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g(&,ﬁ): inf L(X /1,,u)

X feasible

7 L(Xa &9 ﬁ) +Z/1| fl +Z:u|
g
Le

DUALITY
GAP
I\ n f,(x) ( yfo strong duality
min max
CT,.,,IC y o2 LAl 94 4 >0 weak duality

de Telecomunicacions

In summary, solve the new

blem:
problem H}ELX . (/1 p )

st. A>0
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KKT (Karush,Kuhn,Tucker) and duality

gap

Cero duality gap implies equality in the previous
2 relationship between primal, dual and min-dual functions

N 0(2. ) L 2.)~ 1,9
AN /L \ 4. £i(x)=0

C_!_MT Co implies
b — \ X L=0 Complementary slackness
condition
In summary: ) )
hi(g )=O fi(g )SO
A>20  V.L=0
W T
050 Z.4(x)=0
Vau
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Sensitivity Analysis

min f(x) st. f(x)<u, h(x)<v.

I
X

£ (! , \_/) differentiable at u=v=0
AN _#©0)

. . of7(0,0
CT..,,TGQ strong duality holds 4 = U Hi =~ 8(\7 2

de Telecomunicacions
de Catalunya

for u, small and positive f* increasesas — A u.

%
/11 tell us how active is the constraint
at the optimum
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