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ML, MSE and the MDIR Receiver

-Tx-Rx optimization can be done over the ML receiver.

- Complexity can be very high for ns (# of streams) 
greater than 4.

- Existing alternatives is to consider MSE/ZF designs 
for the receiver, less demanding in terms of memory and 
computational load (but sub-optimum).
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3 Assuming a square root decomposition of the 
noise matrix we arrive to the MDIR detector.
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MDIR to reduce the ML with the presence of 
interferers to white noise (easier metric computation 

than in the original. Matched DIR on the stream 
processing. Forward equalizer concept.
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The MSE/ZF Receiver
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and, the MSE matrix

Note that bit-streams are assumed uncorrelated 
which holds also when using block (repetition) or 

convolutional codes
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The MSE Receiver and MSE Matrix
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In case of ZF remove from the MSE the 
Identity matrix

Before facing the Tx design, some preliminars.....
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QUALITY equivalent to  MSE or SNR or 

BER  ??

For single channel (SISO) it is easy to conect these 3 
quality measures:
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For low SNR regime the BER is concave for high 
SNR (BER<0.1) is convex
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vector

ESI 

IEESSNR   11.

UNLESS the MSE 
matrix is diagonal the 
SNR per stream is not 

properly defined
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Convexity of BER(MSE) for BER<0.02
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Majorization Theory

Majorization makes precise the notion that the 
components of a vector are “less spread” than the 

components of other vector.

Let us assume two 
vectors with 

components arranged in 
decreasing order
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When the sum up N is also smaller 
for x than for y we denote this as “y

weakly majorizes x” yx w

Also, using logarithms we may extend the concept of 
majorization to the product of the vector components 

instead to their sum.

Some examples:
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Schur-Concave and Schur-Convex

A real valued function  x is said to be Schur-convex if

   yxyx 

It is said Schur-concave if
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Sc-cx and Sc-ce do not cover the complete set of real 
valued function defined over x
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MSE Defined Designs
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SC-ce and SC-cx functions of MSE and 

MIMO Tx Designs

The objective for the Tx design will be of the form 

  MSEdiagfmin

Since, diagonal is majorized by the eigenvalues of the 
matrix, for Schur-Concave functions the optimal 

solution will be to diagonalize the MSE

As a consequence, the number of available channels 
will be equal to the rank of the channel meaning that if 

we try to send more symbols than the minimum number 
of antennas (Tx-Rx) the excess symbols will be 

systematically on error.
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For Schur-Concave functions of the MSE DO NOT 

send more symbol streams than the minimum number 
of antennas at Tx-Rx

In summary, the Tx matrix will contain only the power 
allocation matrix and the spatial processor
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The eigenvectors of
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Power Allocation

  HUzdiagUQ ..The solution diagonalices the MSE



15   MSEdiagfmin

When f(.) is Schur-Convex since the uniform MSE 
(the same value for all diagonal entries) is majorized 
by any other choice, this implies that the solution has 

to set all the diagonal elements of the MSE matrix 
equal.

At the same time, when there are more symbols than 
eigen-channels an unitary matrix (rotation) is needed to 

spread the energy of all the streams on the available 
channels.

HVzdiagUB ).(. 2/1   HUzdiagUQ ..

In this case the optimum Tx-Rx does not diagonalices 
the MSE matrix
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Arithmetic Mean of the MSE diagonals

The problem is:
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The trace is a Schur-Concave function of the diagonal 
entries, in consequence:
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The solution is that B diagonalizes RH

The optimum Tx diagonalizes the channel 
and also the MSE (for ns, #of streams, equal 

to no, rank of the MIMO channel) 

  H
H

UdiagUR ..   2/1. zdiagUB 



18
New problem

Power allocation:
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- Not all modes are activated

- More power to high eigenmodes (fairness!)

- Waterfilling algorithm

- When all the modes are activated:
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The Geometric mean of the MSE

The problem is:
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The determinat or geometric mean is a Schur-Concave 
function (use log(.) at the objective) of the diagonal entries, 

in consequence:

The solution is that B diagonalizes RH

The optimum Tx diagonalizes the channel 
and coincides with the capacity solution 
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The MIN-MAX MSE

The problem is:
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The trace is a Schur-Convex function of the diagonal 
entries, in consequence:

equalentriesMSEalld 1

Assuming that the number of symbol streams is L 
and the rank of the MIMO channel is L0<L. Implies 

that the solution for the Tx will be in its general 
form:

  HVzdiagUB .. 2/1



22 The MSE matrix will be:

    HH
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Since DRh=diag(1,2,.., L0,0,..,0) it is non-sense to 
allocate power to the null eigenvalues; thus L-L0

cahnnels will be with an MSE equal 1 (full error) and its 
trace would be:
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Since the unitary matrix V does not modify the trace, 
it means that the trace of the MSE is the same that the 
trace of MSE0. In consequence the mission of V is to 
transform MSE0 in order that all the diagonal entries 

of MSE are equal to:
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Now we can formulate the following convex problem:
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The solution for the power loading is identical to 
the trace of the MSE. The Tx differs in this case in 
the necessity of matrix V at Tx. The MSE matrix is 

not longer diagonaliced
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There is a sub-optimal solution which is to force by 
the power loading that all the entries of the MSE0 

matrix are equal.
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The second term is larger (see slide 26) than the 
obtained from the optimal solution
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Arithmetic mean of the SNR

REMARK: Only properly defined if the MSE matrix is 
diagonalized.

The problem is:       
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The trace is a Schur-Concave function of the diagonal 
entries, in consequence:
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New problem

Power allocation:

qqzEqzts
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The solution for this problem is just to provide all 
the available energy to the best eigen-channel. 

BEAMFORMING and pack all the streams in a 
single stream
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The Determinant of the SNR (Geometric 

mean)

The solution is UPA and no CSIT is 
necessary.

The MAX-MIN of the SNR and BER 

The solution, as in the Min-max of the MSE, is 
the same since both functions are convex.
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Arithmetic mean of the BER

Since for small MSE the BER is convex (Pe<10-1) the 
solution reduces also to the mean MSE plus a rotation 

to get the same value at all the diagonal entries.

Geometric mean of the BER

Beamforming
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SIMULATIONS
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The TX Architecture (Single/Multiple 

Symbols)
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For single symbol at Tx the ML detector focused on 
the symbol not in the bit-streams was:
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The ML detector for optimum bit decoding will be:
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Assuming only an error in a single component of the 

streams vector and with:

BRBofelementqqqt
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The probability of error per stream will be:
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Since dq is selected for unitary energy per symbol for 
each #q constellation, the design would be to minimice 
some objective (minimax or average) contrained to the 

maximum energy to be used by Tx. 

Note that it is assumed that there is no room for bit 
allocation which is assumed done (no sense?)
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Note that the objective of max average SNR will end 
up in to diagonalice the channel. This implies that the 

manner that streams will pass the channel will be 
traveling along the eigenvalues of it.

Proper design: TX under maximum capacity and 
RX with ML detection

Point To Point MIMO: MIMO PTP

-Served as single user

- Served as contrained rate streams 
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The ML Receiver (Baseline)
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Taking into account the Tx architecture,

The detector formulation in order to compute the pair-
wise error probability reduces to:

where

Note that the spatial processing, the 
power allocation and the constellation 
are clearly separated in this formula
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Duality Theory and KKT Conditions
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Convex problems

Feasible solutions and optimal value *f

The Lagrangian is:

, Dual 
variables

x Primal variables
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The dual function (always concave 
regardless the original could be not)
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         xxfxfxL iii  .,, 0

    ,,inf, xLg
feasiblex



DUALITY 
GAP

   






dualityweak
dualitystrong

gxf
x 0

0
,maxmin

,0 


In summary, solve the new 
problem:  

0..

,max
,






ts

g



41
KKT (Karush,Kuhn,Tucker) and duality 

gap
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Sensitivity Analysis

 vuf ,* differentiable at u=v=0
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